dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Sediment transport mechanisms inferred from heavy mineral assemblages on the 2010 Chilean tsunami deposit
VerfasserIn João Cascalho, Pedro Costa, Javier Lario
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250139880
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-3198.pdf
 
Zusammenfassung
Characterization of heavy mineral (HM) assemblages in tsunami deposits has been applied to infer inundation and backwash phases and to establish sediment sources. In ideal conditions and due to their specific density (>2.9 g/cm3), heavy minerals are the most suitable component of a sediment assemblage that can provide information regarding flow competence. Having these features in consideration, sandy tsunamigenic samples from Arauco and Mataquito areas (central Chile) were retrieved after the 27th of February 2010 tsunami that affected the Chilean coastline. Twenty seven samples (a total of 54 thin sections) tsunamigenic and beach samples were prepared to observe HM under the petrographic microscope. After dividing the samples in 4 fractions (<63 µm, 63- 125 µm, 125-500µm and >500 µm), HM were separated using bromoform and two fractions (63- 125 µm and 125-500µm) were individually mounted using Canada balsam resin on glass slides. About 300 heavy minerals per slide were identified and counted. Both assemblages were mainly composed of magnetite, pyrrhotite, amphiboles, pyroxenes, olivine, micas and zircon (this specie particularly abundant in the finer fraction analyzed). In Arauco (Ar), average HM percentages in the 125-500 µm fraction was 17.9% while in Mataquito (Ma) it was 25.7%. In the 63-125 µm fraction HM average percentages were 36.9% and 56.1%, for Ar and Ma respectively. In the 125-500 µm fraction the percentage of magnetic minerals (the densest of the denser HM) correspond to 13.2% in Ar and 2.7% in Ma. While in the finer fraction these percentages are of 0.24% and 0.1% In Ar it was possible to perceive that the highest concentration in HM and magnetic minerals was observed in the NE sector (Llico) of the embayment, where the highest run-up was observed. In this specific sector an inland decrease of HM and magnetic minerals was detected along a 300m profile, with HM percentages varying from 27% to 9% and magnetic minerals from 16% to 5%, thus suggesting a progressive energy decrease with inundation extent. In Ma only an inland decrease in magnetic minerals was observed (in Lloca sector) with values decreasing from 4.9% to 2.5% with 175m. This also indicates a decrease in sediment transport competence by the incoming tsunami waves. Here, the potential of HM is confirmed as a useful sedimentological tool to better understand tsunami events retrieving relevant information regarding to infer energy of tsunami waves. This work was supported by the Spanish Government Project CGL2013-42847-R. and through FCT- Instituto Dom Luiz UID/GEO/50019/2013. This is a contribution to the UNESCO IGCP Project 639 "Sea Level Change from Minutes to Millennia".