dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Deflected Propagation of CMEs and Its Importance on the CME Arrival Forecasting
VerfasserIn Yuming Wang, Bin Zhuang, Chenglong Shen
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250139722
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-3016.pdf
 
Zusammenfassung
As the most important driver of severe space weather, coronal mass ejections (CMEs) and their geoeffectiveness have been studied intensively. Previous statistical studies have shown that not all the front-side halo CMEs are geoeffective, and not all non-recurrent geomagnetic storms can be tracked back to a CME. These phenomena may cause some failed predictions of the geoeffectiveness of CMEs. The recent notable event exhibiting such a failure was on 2015 March 15 when a fast CME originated from the west hemisphere. Space Weather Prediction Center (SWPC) of NOAA initially forecasted that the CME would at most cause a very minor geomagnetic disturbance labeled as G1. However, the CME produced the largest geomagnetic storm so far, at G4 level with the provisional Dst value of -223 nT, in the current solar cycle 24 [e.g., Kataoka et al., 2015; Wang et al., 2016]. Such an unexpected phenomenon naturally raises the first question for the forecasting of the geoeffectiveness of a CME, i.e., whether or not a CME will hit the Earth even though we know the source location and initial kinematic properties of the CME. A full understanding of the propagation trajectory, e.g., the deflected propagation, of a CME from the Sun to 1 AU is the key. With a few cases, we show the importance of the deflection effect in the space weather forecasting. An automated CME arrival forecasting system containing a deflected propagation model is presented.