dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Identifying the complex melting reaction from 20 Ma to 14 Ma in Tsona leucogranite in Southern Tibet: geochemistry, zircon U-Pb chronology and Hf isotopes evidence
VerfasserIn Qingshang Shi, Zhidan Zhao, Dong Liu, Di-Cheng Zhu
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250139426
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-2663.pdf
 
Zusammenfassung
The Miocene leucogranites, the record of the evolution of the Himalayan-Tibetan Orogen, extensively intruded the Greater Himalayan Sequence (GHS), and distributed along the South Tibetan Detachment System (STDS) (Guo and Wilson, 2012). Here we present a study of geochemistry, zircon U-Pb chronology and Hf isotopes on the Yamarong leucogranites from Tsona area, Eastern Himalaya, to explore the petrogenesis of the rocks, including melting condition and mechanism, and source of fluid within the magmatism through time. Our new results include: (1) The age of the Yamarong leucogranites range from 14 Ma to 20 Ma (YM1510-1 = 19.7 ± 0.1 Ma, n = 13; YM1502-1 = 17.5 ± 0.1 Ma, n = 12; YM1412 =14.2 ± 0.1 Ma, n = 18), which suggest that the anataxis processes have lasted for more than 6 Ma. (2) The geochemical features are different between the rocks with changing ages, especially between 20 Ma and 17 Ma. The Rb/Sr value of 20 Ma leucogranites (4.1-6.84) is lower than that of 17 Ma samples (5.12-19.02). The 20 Ma leucogranites have higher Ba contents (188-337 ppm) than that of 17 Ma rocks (50-158ppm), which exhibit different trends in the Rb/Sr versus Ba plot, and reveal different melting reaction from 20 Ma to 17 Ma. (Inger and Harris, 1993) (3) The ɛHf(t) isotopes of 20 Ma leucogranites are lower (average ɛHf(t) = -12.5) than that of 17 Ma ones (average ɛHf(t) = -10), which implies differential dissolution of inherited zircon during two partial melting events possibly due to different fluid contribution (Gao et al., 2017); (4) The positive linear relationship of LREEs versus Th in the rocks, with relatively higher contents of Th and LREEs in the 20 Ma, and lower in the 17 Ma leucogranites, which suggests the relationship were mostly controlled by monazite. And this further indicates more monazite was dissolved from the source region in the early stage (∼20Ma) than the later (17Ma) (Gao et al., 2017). In summary, our study provides new evidence for the complex melting mechanism, from fluid-fluxed melting at ∼20 Ma to later fluid-absent melting at ∼17 Ma of muscovite in the metasedimentary sources. The ∼20 Ma magmatism in Tsona area may represent the early stage of exhumation, with more fluid possibly came from either the Lesser Himalayan sequence (LHS) or the Cretaceous – Paleogene molasses beneath the along – stike extrapolation of the Yamarong leucogranties source (Harrison and Wielicki, 2016). Reference: Gao L-E, Zeng L, Asimow PD, 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1):39-42. Guo Z, Wilson M, 2012. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22(2): 360-376. Harrison TM, Wielicki MM, 2016. From the Hadean to the Himalaya: 4.4 Ga of felsic terrestrial magmatism. American Mineralogist, 101(6): 1348-1359. Inger S, Harris N, 1993. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34(2): 345-368.