dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel What is geological entropy and why measure it? A parsimonious approach for predicting transport behaviour in heterogeneous aquifers
VerfasserIn Marco Bianchi, Daniele Pedretti
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250138787
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-1909.pdf
 
Zusammenfassung
We present an approach to predict non-Fickian transport behaviour in alluvial aquifers from knowledge of physical heterogeneity. This parsimonious approach is based on only two measurable parameters describing the global variability and the structure of the hydraulic conductivity (K) field: the variance of the ln(K) values (σY 2), and a newly developed index of geological entropy (HR), based on the concept of Shannon information entropy. Both σY 2 and HR can be obtained from data collected during conventional hydrogeological investigations and from the analysis of a representative model of the spatial distribution of K classes (e.g. hydrofacies) over the domain of interest. The new index HR integrates multiple characteristics of the K field, including the presence of well-connected features, into a unique metric that quantifies the degrees of spatial disorder in the K field structure. Stochastic simulations of tracer tests in synthetic K fields based on realistic distributions of hydrofacies in alluvial aquifers are conducted to identify empirical relations between HR, σY 2, and the first three central temporal moments of the resulting breakthrough curves (BTCs). Results indicate that the first and second moments tend to increase with spatial disorder (i.e, HR increasing). Conversely, high values of the third moment (i.e. skewness), which indicate significant post-peak tailing in the BTCs and non-Fickian transport behaviour, are observed in more orderly structures (i.e, HR decreasing), or for very high σY 2 values. We show that simple closed-form empirical expressions can be derived to describe the bivariate dependency between the skewness of the BTC and corresponding pairs of HR and σY 2. This dependency shows clear correlation for a broad range of structures and Kvariability levels. Therefore, it provides an effective and broadly applicable approach to explain and predict non-Fickian transport in real aquifers, such as those at the well-known MADE site and at the Lawrence Livermore National Laboratory.