dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Changes in vegetation and climate as reflected in tooth enamel isotopes of Quaternary mammalian faunas from Indonesia
VerfasserIn Renee Janssen, Josephine Joordens, Dafne Koutamanis, Mika Puspaningrum, John de Vos, Natasja den Ouden, Jeroen van der Lubbe, John Reijmer, Oliver Hampe, Gareth Davies, Hubert Vonhof
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250138702
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-1810.pdf
 
Zusammenfassung
Climate and sea level fluctuations play a dominant role in the Quaternary biodiversity dynamics of Indonesia, with glacial-interglacial cycles affecting hydroclimate, vegetation, and animal migrations. We analyzed the carbon (δ13C), oxygen (δ18O), and strontium (87Sr/86Sr) isotopes of bovid, cervid, and suid teeth from several Pleistocene and Holocene sites on Java and Sumatra, in order to refine reconstructions of the paleohabitats of these faunas, gain more insight into their climatic background, and constrain their chronology. Our carbon isotope data indicate that individual sites are strongly dominated by the presence of either C3-browsers or C4-grazers. Herbivores from the Padang Highlands (Sumatra) and Hoekgrot (Java) cave faunas were mainly C3-browsers, while the studied herbivores from Homo erectus-bearing sites Trinil and Sangiran (Java) utilized an almost exclusive C4 diet. The C4 signal of Trinil herbivores confirms that the Hauptknochenschicht (Trinil HK) was deposited during glacial conditions, allowing us to hypothesize that it can be dated to MIS 16, 14 or 12. We propose that the dominant vegetation signals in Indonesian fossil sites, as revealed by δ13C data, reflect a glacial-interglacial contrast. The scarcity of δ13C values typically indicating mixed C3/C4 feeding may indicate that the transition between glacial and interglacial precipitation regimes was relatively abrupt. The observed positive correlation between δ13C and δ18O values can be attributed to the glacial-interglacial contrast between precipitation δ18O values, caused by differences in monsoon intensity. The 87Sr/86Sr data show that the dominant C4 signal observed in the Sangiran and Trinil herbivore faunas corresponds with roaming in a variety of landscape settings, corroborating our hypothesis that the δ13C values are representative of the overall C3/C4vegetation balance in these areas. These results provide a framework that will allow interpretation of future isotope data from these and other fossil sites in this region, including the isotopic composition of Homo erectus fossils.