dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Standardization of splash device
VerfasserIn María Fernández Raga, Piet Peters
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250138171
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-1107.pdf
 
Zusammenfassung
The erosion is a complex process that has been studied extensively by numerous researchers, requiring a prolongued time effort and a large economic investment. To be effective, the measurements of erosion should be precise, controlled and replicable, and to assure efectiveness, measurement devices of erosion should be properly designed, constructed, well calibrated and also they should be operated by a trained person (Stroosnijder, 2005). Because researchers try to improve old devices, the equipment is constantly being redesigned, making the measurements not comparable and furthermore, producing a lack of available standarized device. The lack of standardization of erosion equipment is more obvious in the case of the local splash erosion, where the nature of the process makes very difficult to isolate its effects. In this article we compare the results obtained from five of the most common splash erosion devices (selected from more than 16 different currently types), under the same rain conditions, with the objective of facilitate the standardization of the method that will be more easy to build, minimizing the error. A set of six splash devices were setted in well known positions under simulated rain, to measured the differences, among devices and the accuracy of the data recovered after 10 minutes of rainfall simulation under different intensities (from 60 to 130 mm/h). The rainfall simulator of Wageningen was used, using sand as splash erosion source. Differences in the infiltration were also measured, and a calibration of sizes and speeds of the raindrops was done using the photography method (Hamidreza-Sadeghi et al., 2013). The splash devices selected for this study were unbounded splash devices (like the funnel, the cup (Fernandez-Raga et al., 2010) and the splash flume (Jomaa et al., 2010)), and bounded devices that allow the calculation of splash rate, (like the new cup (Scholten et al., 2011) and the Morgan tray). The behaviour of different splash devices with the changes of intensity will be explained and discussed, with a recommendation of use. References Fernandez-Raga, M, Fraile, R, Keizer, J, Teijeiro, MEV, Castro, A, Palencia, C, Koenders, J and Marques, RLD. 2010. The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmospheric Research 96, 225-240. doi: 10.1016/j.atmosres.2009.07.013 Hamidreza-Sadeghi, S, Abdollahi, Z and Khaledi-Darvishan, A. 2013. Experimental comparison of some techniques for estimating natural raindrop size distribution on the south coast of the Caspian Sea, Iran. Hydrological sciences Journal 58, 1374-1382. doi: 10.1080/02626667.2013.814917 Jomaa, S, Barry, D, Brovelli, A, Sander, G, Parlange, J, Heng, B and Tromp-van Meerveld, H. 2010. Effect of raindrop splash and transversal width on soil erosion: Laboratory flume experiments and analysis with the Hairsine-Rose model. Journal of Hydrology 395, 117-132. doi: 10.1016/j.jhydrol.2010.10.021 Scholten, T, Geißler, C, Goc, J, Kühn, P and Wiegand, C. 2011. A new splash cup to measure the kinetic energy of rainfall. Journal of Plant Nutrition and Soil Science 174, 596-601. doi: 10.1002/jpln.201000349 Stroosnijder, L. 2005. Measurement of erosion: is it possible? Catena 64, 162-173. doi: 10.1016/j.catena.2005.08.004