dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Evolution of asteroid (4) Vesta in the light of Dawn
VerfasserIn Guneshwar Thangjam, Kurt Mengel, Andreas Nathues, Kai H. Schmidt, Martin Hoffmann
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250137154
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-18354.pdf
 
Zusammenfassung
Asteroid (4) Vesta has been visited by the NASA Dawn spacecraft in 2011/12. The combination of compositional/elemental information from the three onboard instruments with mineralogical information from the howardite-eucrite-diogenite (HED) clan of stony achondrites has shed new light on the surface lithologic heterogeneity and the early evolution. Although petrologic/chemical models have tried to unravel the evolutionary processes, inconsistencies exist for some chemical major element/phase [e.g., 1, 2]. A revised evolutionary model is presented here [3]. The three oxygen isotope signature of HEDs and, thus, of proto-Vesta is best met by a mixture of 80% ordinary plus 20 % CV chondrites. Assuming a 27Al-triggered magma ocean within the first MA after accretion and taking into account the reliable major element data of the silicate fraction of the chondritic mixture results a crystallization sequence that differs from the earlier models [1, 2, 3]. The crystallized phase obtained by ‘MELTS’ software [4] starts with olivine and continues with minor olivine plus orthopyroxene until the liquid reaches a Kd value (partition coefficient) of 0.31 where the fractionated melt is in equilibrium with the residual liquid [5]. The abundance of minerals and rocks formed in this model are converted in volume proportions assuming a spherical shape of early Vesta (262 km radius) with a core (FeNi, FeNiS) radius of 110 km [6]. Two scenarios are considered to describe the early bulk silicate Vesta. First, the early-crystallized olivine accumulated at the base of the silicate shell is accounted for a dunitic lower mantle having a thickness of 46 km while the later crystallized phases form an orthopyroxenitic upper mantle and a crust of thickness 84 and 22 km, respectively. Second, an olivine-rich lower mantle that gradually changes to orthopyroxene-rich upper mantle is expected having an overall shell thickness of 137 km, with a 15 km thick crust. An important result is that the deep-seated olivine-rich mantle has not been accessible to the deep excavation processes by large impacts such as the Rheasilvia basin formation [7]. This is likely the reason why olivine-rich exposures detected by Dawn are of exogenic origin [8]. Reference: [1] Mandler B. E., Elkins-Tanton L. T. 2013. Meteorit. Planet. Sci. 48, 2333. [2] Toplis M.J., et al., 2013. Meteorit. Planet. Sci. 48, 2300. [3] Thangjam G., PhD thesis, (in publication process). [4] Ghiorso M.S., Sack R.O., 1995. Contributions to Mineralogy and Petrology 119, 197. [5] Takahasi E., Kushiro I., 1983. American Mineralogist. 68, 859. [6] Russell C.T., et al., 2012. Science 336, 684. [7] Clenet H., et al., 2014. Nature 511, 303. [8] Nathues A., et al., 2015. Icarus 258, 467.