dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Phanerozoic burial and exhumation history of southernmost Norway estimated from apatite fission-track analysis data and geological observations
VerfasserIn Peter Japsen, Paul F. Green, Johan M. Bonow, James A. Chalmers, Erik S. Rasmussen
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250137141
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-18337.pdf
 
Zusammenfassung
We present new apatite fission-track analysis (AFTA) data from 27 basement samples from Norway south of ~60°N. The data define three events of cooling and exhumation that overlap in time with events defined from AFTA in southern Sweden (Japsen et al. 2015). The samples cooled below palaeotemperatures of >100°C in a major episode of Triassic cooling as also reported by previous studies (Rohrman et al. 1995). Our study area is just south of the Hardangervidda where Cambrian sediments and Caledonian nappes are present. We thus infer that these palaeotemperatures reflect heating below a cover that accumulated during the Palaeozoic and Triassic. By Late Triassic, this cover had been removed from the Utsira High, off SW Norway, resulting in deep weathering of a granitic landscape (Fredin et al. 2014). Our samples were therefore at or close to the surface at this time. Palaeotemperatures reached ~80°C prior to a second phase of cooling and exhumation in the Jurassic, following a phase of Late Triassic – Jurassic burial. Upper Jurassic sandstones rest on basement near Bergen, NW of our study area (Fossen et al. 1997), and we infer that the Jurassic event led to complete removal of any remaining Phanerozoic cover in the region adjacent to the evolving rift system prior to Late Jurassic subsidence and burial. The data reveal a third phase of cooling in the early Miocene when samples that are now near sea level cooled below palaeotemperatures of ~60°C. For likely values of the palaeogeothermal gradient, such palaeotemperatures correspond to burial below rock columns that reach well above the present-day landscape where elevations rarely exceed 1 km above sea level. This implies that the present-day landscape was shaped by Neogene erosion. This is in agreement with the suggestion of Lidmar-Bergström et al. (2013) that the near-horizontal Palaeic surfaces of southern Norway are the result of Cenozoic erosion to sea level followed by uplift to their present elevations in a fourth event that is not detected by the AFTA data. Fossen, Mangerud, Hesthammer, Bugge, Gabrielsen 1997: The Bjorøy Formation: a newly discovered occurrence of Jurassic sediments in the Bergen Arc System. Norsk Geologisk Tidsskrift 77. Fredin, Zwingmann, Knies, Sørlie, Gandal, Lie, Müller, Vogt, 2014: Saprolites on- and offshore Norway: New constraints on formation processes and age. Nordic Geological Winter Meeting, Lund, Sweden. Japsen, Green, Bonow, Erlström 2015: Episodic burial and exhumation of the southern Baltic Shield: Epeirogenic uplifts during and after break-up of Pangea. Gondwana Research, in press. Lidmar-Bergström, Bonow, Japsen 2013: Stratigraphic landscape analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change 100. Rohrman, van der Beek, Andriessen, Cloetingh 1995: Meso-Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermochronology. Tectonics 14.