dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Atmospheric drivers that compromise the assumed long-term stationarity between δ18O-based proxy records and NAO, winter air temperature and winter precipitation amount.
VerfasserIn Laia Comas Bru, Frank McDermott, Martin Werner
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250135049
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-15846.pdf
 
Zusammenfassung
The control exerted by large scale atmospheric circulation modes on the oxygen isotopic composition of precipitation (δ18Op) has been utilised to infer past atmospheric circulation states using proxies that capture δ18Op at a wide range of locations. Such reconstructions typically rely on the oxygen isotopic composition of terrestrial archives such as ice-cores, tree rings, speleothems and lacustrine carbonates and are underpinned by assumptions about a long term stationarity of the influence of the atmospheric teleconnection pattern of interest on δ18Op. However, such reconstructions should also consider the uncertainties that arise from non-stationarities in the δ18Op-NAO relationship during the instrumental period. Here, new insights into the causes of these temporal non-stationarities are presented for the European region using both observations (GNIP database) and the output of an isotope-enabled general circulation model (ECHAM5-wiso). The results show that, although the East Atlantic (EA) pattern is generally uncorrelated to δ18Op during the instrumental period, its polarity affects the strength of the δ18Op-NAO relationship in some European locations. Non-stationarities in this relationship can be rationalised through changes in the sea-level pressure structure in the N. Atlantic region as a result of the concomitant states of the NAO and EA patterns, which affect the trajectories of the air-masses carrying moisture onto Europe and ultimately the δ18Op signal. These shifts are consistent with those reported previously for NAO-winter climate variables and the resulting non-stationarities mean that δ18O-based NAO reconstructions could be compromised if the balance of positive and negative NAO/EA states differs substantially in a calibration period compared with the period of interest in the past. The same approach has been followed to assess the relationships between δ18Op and both winter total precipitation and winter mean surface air temperature, with similar results. This study also identifies regions within Europe where temporal changes in the NAO, air temperature and precipitation can be more robustly reconstructed using δ18O time series from natural archives, irrespective of concomitant changes in the EA. Identification of such regions is crucial so that resources can be focused into the areas least affected by such non-stationarities.