dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Long-term impact of bottom trawling on pelagic-benthic coupling in the southern North Sea (German Bight)
VerfasserIn Jana Friedrich, Justus E. E. van Beusekom, Andreas Neumann, Celine Naderipour, Felix Janssen, Soeren Ahmerkamp, Moritz Holtappels, Ulrike Schueckel
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250135002
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-15791.pdf
 
Zusammenfassung
The southern North Sea, and the German Bight, has been systematically bottom-trawled at least since the late 19th century (Christiansen, 2009; Reiss et al., 2009; Kröncke 2011; Emeis et al., 2015, Neumann et al., 2016). As a result, benthic habitats and benthic biogenic structures created by bivalves, polychaetes and hydroids where destroyed or reduced. The parallel removal of hard substrate (gravel and boulders) avoids the resettlement of hard-substrate depended species. For example, the Oyster ground, a huge oyster bank a hundred years ago (Olsen, 1883), turned into a muddy depression today. In addition, shallow depth of max 40 m, strong tidal currents and frequent storms result in a high-energy environment with low sedimentation rates and recurrent sediment resuspension. The decrease in benthic filtering capacity by disturbance in epifauna and bottom roughness (Callaway et al., 2007) apparently influence pelagic-benthic coupling of biogeochemical fluxes. Heip et al. (1995) indicate that benthic respiration at depths prevailing in the German Bight accounts for 10-40% of total respiration, whereas pelagic respiration accounts for 60-90%. Previous estimates are in the middle of this range (Heip et al., 1995). To test these hypotheses and to assess the partitioning of benthic and pelagic processes, and the factors influencing organic matter mineralization, we measured pelagic production and respiration based on Winkler titration, in-situ benthic fluxes using chamber landers, we did ex-situ incubations of intact sediment cores and analysed still images from a towed benthic video sled. In addition, O2 fluxes in permeable sediments were estimated by integrating the volumetric rate measurements of the upper sediment layer over in-situ microsensor-measured O2 penetration depth. Our current results show significant seasonality in benthic respiration, with highest rates in summer and lowest rates in winter. No significant differences in total benthic respiration rates were measured on sandy (permeable) and silty (diffusive) sediments, whereas significant differences of microbial O2 uptake were observed indeed between permeable and diffusive sediments. Nevertheless, when considering the multitude of different methods, we found that benthic respiration over the season seemed to be governed mainly by settling of fresh organic matter during calm periods and its rapid turnover in a region where strong tidal and wind-forced currents distribute suspended particles over large areas. Summer pelagic respiration rates were an order of magnitude higher then benthic rates, and account for 88-93% of total respiration, which represents 79-98% of pelagic primary production. Our measurements of benthic respiration account for 7-12% of the total in the German Bight, which is lower compared to earlier studies. Strong tidal and wind-forced currents along with the lack of complex three-dimensional biogenic structures seem to prevent settling of suspended matter and foster resuspension, thereby supporting pelagic turnover processes. Hence, we assume that benthic turnover might have been higher before systematic bottom trawling destroyed the bottom hydrobiological regime. Today, due to the strong current regime in the German Bight, the pelagic system appears to be a largely closed system of production and respiration, with comparably little for export to the benthic system due to absence of biogenic structures. References Callaway R, Engelhard GH, Dann J, Cotter J, Rumohr H (2007) One century of North Sea epibenthos and fishing: comparison between 1902-1912, 1982-1985 and 2000. Marine Ecology Progress Series 346, 27-43. Christiansen S (2009) Towards good environmental status - A network of marine protected areas for the North Sea. In: Lutter S (ed) WWF Germany, Fankfurt/Main Emeis K-C, van Beusekom J, Callies U, Ebinghaus R, Kannen A, Kraus G, Kröncke I, Lenhart H, Lorkowski I, Matthias V, Möllmann C, Pätsch J, Scharfe M, Thomas H, Weisse R, Zorita E (2015) The North Sea -A shelf sea in the Anthropocene. Journal of Marine Systems 141:18-33 Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaerd K (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology: an Annual Review 33:1-149 Kröncke I (2011) Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate. Estuarine, Coastal and Shelf Sciences 94 (3): 234-245. Neumann H, Diekmann R, Kröncke I (2016) The influence of habitat characteristics and fishing effort on functional composition of epifauna in the south-eastern North Sea. Estuarine, Coastal and Shelf Sciences 169: 182-194. Olsen OT (1883) The Piscatorial Atlas of the North Sea, English and St. George's Channels. Taylor and Francis, London Reiss H, Greenstreet S, Sieben K, Ehrich S, Piet G, Quirijns F, Robinson F, Wolff W, Kröncke I (2009) Effects of fishing disturbance on benthic communities and secondary production within an intensively fished area. Marine Ecology Progress Series 394:201-213