dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Tracing recycled volatiles in a heterogeneous mantle with boron isotopes
VerfasserIn Kristina Walowski, Linda Kirstein, Cees-Jan De Hoog, Tim Elliot, Ivan Savov, Colin Devey
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250134976
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-15761.pdf
 
Zusammenfassung
Recycling of oceanic lithosphere drives the chemical evolution of the Earth’s mantle supplying both solids and volatiles to the Earth’s interior. Yet, how subducted material influences mantle composition remains unclear. A perfect tracer for slab recycling should be only fractionated at the Earth’s surface, have a strong influence on mantle compositions but be resistant to perturbations en route back to the surface. Current understanding suggests that boron concentrations linked to B isotope determinations fulfil all these requirements and should be an excellent tracer of heterogeneity in the deep mantle. Here, we present the trace element, volatile and the B isotope composition of basaltic glasses and melt inclusions in olivine from distinct end-member ocean island basalts (OIB) to track the fate of recycled lithosphere and ultimately document how recycling contributes to mantle heterogeneity. The chosen samples represent the different end member OIB compositions and include: EMI (Pitcairn), EMII (MacDonald), HIMU (St. Helena), and FOZO (Cape Verde & Reunion). The data is derived from both submarine and subaerial deposits, with B isotope determination of both basaltic glass and melt inclusions from each locality. Preliminary results suggest OIB have B isotopic compositions that overlap the MORB array (-7.5‰±0.7; Marschall et al., 2015) but extend to both lighter and heavier values. These results suggest that B isotopes will be useful for resolving mantle source heterogeneity at different ocean islands and contribute to our understanding of the volatile budget of the deep mantle.