dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Terrestrial cosmogenic 3He: where are we 30 years after its discovery?
VerfasserIn Pierre-Henri Blard, Raphaël Pik, Kenneth A. Farley, Jérôme Lavé, Yves Marrocchi
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250134954
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-15735.pdf
 
Zusammenfassung
It is now 30 years since cosmogenic 3He has been detected for the first time in a terrestrial sample (Kurz, 1986). 3He is now a widely used geochemical tool in many fields of Earth sciences: volcanology, tectonics, paleoclimatology. 3He has the advantage to have a high "production rate" to "detection limit" ratio, allowing surfaces as young as hundred of years to be dated. Although its nuclear stability implies several limitations, it moreover represents a useful alternative to 10Be in mafic environments. This contribution is a review of the progresses that have been accomplished since this discovery, and discuss strategies to improve both the accuracy and the precision of this geochronometer. 1) Measurement of cosmogenic 3He Correction of magmatic 3He. To estimate the non-cosmogenic magmatic 3He, Kurz (1986) invented a two steps method involving crushing of phenocrysts (to analyze the isotopic ratio of the magmatic component), followed by a subsequent melting of the sample, to extract the remaining components, including the cosmogenic 3He: 3Hec = 3Hemelt −4Hemelt x (3He/4He)magmatic (1) Several studies suggested that the preliminary crushing may induce a loss of cosmogenic 3He (Hilton et al., 1993; Yokochi et al., 2005; Blard et al., 2006), implying an underestimate of the cosmogenic 3He measurement. However, subsequent work did not replicate these observations (Blard et al., 2008; Goerhing et al., 2010), suggesting an influence of the used apparatus. An isochron method (by directly melting several phenocrysts aliquots) is an alternative to avoid the preliminary crushing step (Blard and Pik, 2008). Atmospheric contamination. Protin et al. (in press) provides robust evidences for a large and irreversible contamination of atmospheric helium on silicate surfaces. This unexpected behavior may reconcile the contrasted observations about the amplitude of crushing loss. This undesirable atmospheric contamination is negligible if grain fractions smaller than 150 mm are removed before melting. Correction of radiogenic 4He and nucleogenic 3He. Equation 1 is valid only if the 4He extracted by melting is entirely magmatic. To account for a possible radiogenic 4He component, it is crucial to properly estimate the radiogenic 4He production rate, by measuring the U, Th and Sm concentrations of both phenocryst and host, and the phenocryst size. Estimating the nucleogenic 3He also requires measuring Li in the phenocryst. Accuracy of analytical systems. A recent inter-laboratory comparison involving 6 different groups indicated systematic offsets between labs (up to 7%) (Blard et al., 2015). Efforts must be pursued to remove these inaccuracies. 2) Production rates Absolute calibration. There are 25 3He calibration sites among the world, from -47˚ S to 64˚ N in latitude, and from 35 to 3800 m in elevation. After scaling these production rates to sea level high latitude, this dataset reveals a significant statistical dispersion (ca. 13%). Efforts should be focused on regions that are free of data and others, such as the Eastern Atlantic that yields values systematically off. 3He/10Be cross calibrations. Some studies (Gayer et al., 2004 ; Amidon et al., 2009) identified an altitude dependence of the 3He/10Be production ratio in the Himalayas, while other data from the Andes and Africa did not (Blard et al., 2013b ; Schimmelpfennig et al., 2011). There is thus a crucial need for new data at high and low elevation, with and without snow, to precisely quantify the cosmogenic thermal neutron production. Artificial target experiments may also be useful.