dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Ozone retrievals from MAGEAQ GEO TIR+VIS for air quality
VerfasserIn Samuel Quesada-Ruiz, Jean-Luc Attié, William A. Lahoz, Rachid Abida, Laaziz El-Amraoui, Philippe Ricaud, Régina Zbinden, Robert Spurr, Arlindo M. da Silva
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250134105
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-14796.pdf
 
Zusammenfassung
Nowadays, air quality monitoring is based on the use of ground-based stations (GBS) or satellite measurements. GBS provide accurate measurements of pollutant concentrations, especially in the planetary boundary layer (PBL), but usually the spatial coverage is sparse. Polar-orbiting satellites provide good spatial resolution but low temporal coverage -this is insufficient for tracking pollutants exhibiting a diurnal cycle (Lahoz et al., 2012). However, pollutant concentrations can be measured by instruments placed on board a geostationary satellite, which can provide sufficiently high temporal and spatial resolutions (e.g. Hache et al., 2014). In this work, we investigate the potentiality of a possible future geostationary instrument, MAGEAQ (Monitoring the Atmosphere from Geostationary orbit for European Air Quality), for retrieving ozone measurements over Europe. In particular, MAGEAQ can provide 1-hour temporal sampling at 10x10km pixel resolution for measurements in both visible (VIS) and thermal infrared (TIR) bands -thus, we will be able to measure during the day and at night. MAGEAQ synthetic radiance observations are obtained through radiative transfer (RT) simulations using the VLIDORT discrete ordinate RT model (Spurr, 2006) based on output from the GEOS-5 Nature Run (Gelaro et al., 2015) providing optical information, plus a suitable instrument model. Ozone is retrieved from these synthetic measurements using the optimal estimation inversion scheme of Levenberg-Marquardt. Finally, we examine an application of the air quality concept based on these ozone retrievals during the heatwave event of July 2006 over Europe. REFERENCES Gelaro, R., Putman, W. M., Pawson, S., Draper, C., Molod, A., Norris, P. M., Ott, L., Privé, N., Reale, O., Achuthavarier, D., Bosilovich, M., Buchard, V., Chao, W., Coy, L., Cullather, R., da Silva, A., Darmenov, A., Errico, R. M., Fuentes, M., Kim, M-J., Koster, R., McCarty, W., Nattala, J., Partyka, G., Schubert, S., Vernieres, G., Vikhliaev, Y., and Wargan, K.. Evaluation of the 7-km GEOS-5 Nature Run. NASA/TM–2014-104606, Vol. 36., 2015. Hache, E., Attié, J.L., Tourneur, C., Ricaud, P., Coret, L., Lahoz, W.A., El Amraoui, L., Josse, B., Hamer, P., Warner, J., Liu, X., Chance, K., Höpfner, M., Spurr, R., Natraj, V., Kulawik, S., Eldering, A. and Orphal, J.. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality. Atmos. Meas. Tech., 7, 2185-2201, 2014. Lahoz, W. A., Peuch, V. H., Orphal, J., Attie, J.L., Chance, K., Liu, X., Edwards, D., Elbern, H., Flaud, J. M., Claeyman, M., and El Amraoui, L.. Monitoring Air Quality from Space: The Case for the Geostationay Platform. Bulletin of the American Meteorological Society, 93, 221–233, 2012. Spurr, R. J. D.. VLIDORT: A Linearized Pseudo-Spherical Vector Discrete Ordinate Radiative Transfer Code for Forward Model and Retrieval Studies in Multilayer Multiple Scattering Media. Journal of Quantitative Spectroscopy & Radiative Transfer, 102, 316–342, 2006.