dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Downscaling precipitation in the Sahara-Sahelian region during the Holocene in order to decipher the paleo-variations of Lake Chad
VerfasserIn Camille Contoux, Alberte Bondeau, Nicolas Barrier, Florence Sylvestre
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250134102
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-14792.pdf
 
Zusammenfassung
In order to understand the paleo-variability of Saharo-Sahelian paleoprecipitation, which is recorded in the sediments of Lake Chad situated in central Sahel, we use a modelling chain going from global climate to basin-scale hydrological model. Namely, climate model outputs for the Holocene, starting with the mid-Holocene (6ka) available from the IPSL-CM5 global climate model are statistically downscaled with the General Additive Model approach (Levavasseur et al., 2011), then used to feed the LPJmL model (Bondeau et al., 2007) which calculates the equilibrium vegetation and runoff. Climate and runoff are then given to the dynamic routing scheme HYDRA (Coe et al., 2000) in order to calculate the paleo river network and paleo extent of Lake Chad. The results at each step are compared with reconstructions derived from continental proxies on the regional scale in order to assess the robustness of the results. For the mid-Holocene, the downscaled precipitation matches very well precipitation estimations derived from lacustrine pollen data. For the historical period, the LPJmL simulated runoff averaged over the Chad basin depicts the same trend than observations of Lake Chad water level, but the absolute water level is overestimated in HYDRA, which can be attributed to humid biases both in LPJmL and HYDRA. Finally, we will investigate the relative changes in river network and Lake Chad extent between the present and the mid-Holocene.