dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Pulse labelling for carbon turnover measurements with a CRDS for wetlands – challenges and solutions
VerfasserIn Marcin Stróżecki, Mateusz Samson, Bogdan H. Chojnicki, Jacek Leśny, Christophe Moni, Marek Urbaniak, Janusz Olejnik, Radoslaw Juszczak, Hanna Silvennoinnen
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250134003
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-14676.pdf
 
Zusammenfassung
Carbon turnover in peatlands has commonly been studied by estimating carbon allocation and decomposition rates by litterbags, assessing changes in carbon stocks and by measuring the biosphere-atmosphere exchange of carbon gases with various chamber methods or by eddy covariance. In addition, C turnover rates have been measured with pulse labelling methods using 13C and 14C (e.g. Bahn et al. 2009). Pulse labeling (PL) studies in wetlands are, however, sparse (e.g. Gao et al. 2015), presumably as descriptive high water table levels and relatively low productivity render successful tracing difficult. Quite low cost fast-gas-analyzers (Cavity Ring Down Spectrometry, CRDS) make PL experiments more cost-worthy, but their applicability at wetland field and further for measuring elevated 13C – levels is challenging. We carried out a PL as a pre-experiment for a larger labelling campaign of the Wetman-project at Rzecin wetland in Poland. We aimed at defining 1) The optimum labeling for the peatland site, 2) The importance of dissolved 13CO2 both for the loss of the pulse label and for the potential bias to respiratory flux, 3) The reliability of the 13CO2 and 13CH4 measurements when using dynamic closed chambers with a factory calibrated CRDS. We labelled the study area by a transparent chamber combined to Picarro CRDS G2201-i (C input during labelling 4.9 μg 13C). After labelling, we monitored the respiratory 13CO2 flux and the 13CO2 content in the peat water over a 10d- period. In addition, we measured the vegetation13C before labelling and 10 days after. Plants assimilated 2.1 μg C of the added 13C. Half of the recovered 13CO2 (3.6 μg C) originated from respiration. Nearly one third of added 13CO2 immediately dissolved in the water, which at the end of the experiment retained 0.5 μg 13C. Finally, 127 % of the added label was recovered. The high recovery was mainly caused by overestimation in the δ13C. The results of our pre-experiment indicate that 1) Measuring dissolved gases is required for correcting the biases to the respiratory flux 2) the Picarro CRDS has to be thoroughly calibrated for linearity and for δ13C at different signatures. As a result, we developed calibration methods suitable for field conditions and for higher labels. The Research was co-founded by the Polish National Centre for Research and Development within the Polish-Norwegian Research Programme within the project WETMAN (Central European Wetland Ecosystem Feedbacks to Changing Climate – Field Scale Manipulation, Project ID: 203258, contract No. Pol-Nor/203258/31/2013 (www.wetman.pl). Bahn, M. et al., 2009. The New phytologist, Gao, J. et al., 2015. Scientific Reports,