dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Closed-loop 15N measurement of N2O and its isotopomers for real-time greenhouse gas tracing
VerfasserIn Johanna Slaets, Leopold Mayr, Maria Heiling, Mohammad Zaman, Christian Resch, Georg Weltin, Roman Gruber, Gerd Dercon
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250133372
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-13976.pdf
 
Zusammenfassung
Quantifying sources of nitrous oxide is essential to improve understanding of the global N cycle and to develop climate-smart agriculture, as N2O has a global warming potential 300 times higher than CO2. The isotopic signature and the intramolecular distribution (site preference) of 15N are powerful tools to trace N2O, but the application of these methods is limited as conventional methods cannot provide continuous and in situ data. Here we present a method for closed-loop, real time monitoring of the N2O flux, the isotopic signature and the intramolecular distribution of 15N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The developed method was applied to a fertilizer inhibitor experiment, in which N2O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched urea-N (100 kg urea-N/ha), the same fertilizer combined with the nitrification inhibitor nitrapyrin (375 g/100 kg urea), and control cores. Monitoring the isotopic signature makes it possible to distinguish emissions from soil and fertilizer. Characterization of site preference could additionally provide a tool to identify different microbial processes leading to N2O emissions. Furthermore, the closed-loop approach enables direct measurement on site and does not require removal of CO2 and H2O. Results showed that 75% of total N2O emissions (total=11 346 μg N2O-N/m2) in the fertilized cores originated from fertilizer, while only 55% of total emissions (total=2 450 μg N2ON/m2) stemmed from fertilizer for the cores treated with nitrapyrin. In the controls, N2O derived from soil was only 40% of the size of the corresponding pool from the fertilized cores, pointing towards a priming effect on the microbial community from the fertilizer and demonstrating the bias that could be introduced by relying on non-treated cores to estimate soil emission rates, rather than using the isotopic signature. The site preference increased linearly over time for the cores with fertilizer and those with nitrapyrin, but the increase was stronger for the fertilized cores: during the first 10 days of the experiment, theses cores showed a more negative site preference than the cores with inhibitor, while during the last 10 days, the site preference for the fertilized cores was more positive than that of the inhibitor. This change indicates that the site preference of 15N can be used to distinguish the processes of nitrification and denitrification, the former having been supressed by nitrapyrin in the cores treated with the inhibitor. Low enrichment levels (5% atomic excess in this study) sufficed in order to separate emissions from soil and fertilizer, making the proposed closed-loop approach a cost-effective and practical tool to obtain a continuous, in situ characterization of N2O sources.