dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Last glacial to Holocene productivity and oxygen changes based on benthic foraminiferal assemblages from the western Alboran Sea
VerfasserIn José N. Pérez-Asensio, Isabel Cacho, Jaime Frigola, Leopoldo D. Pena, Alessandra Asioli, Jannis Kuhlmann, Katrin Huhn
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250133334
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-13934.pdf
 
Zusammenfassung
Late glacial to Holocene productivity and oxygen changes in the Alboran Sea were investigated analyzing benthic foraminiferal assemblages from the marine sediment core HER-GC-UB06. This 255 cm-long core was recovered at 946 m water depth in the Alboran Sea (western Mediterranean Sea) and includes homogeneous greyish clays from the last 23 ka. Nowadays, the core site is bathed by the Western Mediterranean Deep Water (WMDW) and near the overlying Levantine Intermediate Water (LIW). Benthic foraminifera from the size fraction >63 μm were identified at species level and counted until reaching at least 300 individuals. Q-mode principal component analyses (PCA) was performed to establish benthic foraminiferal assemblages. In addition, benthic foraminifera were classified according to their microhabitat preferences. Diversity was assessed with several diversity indices. Four benthic foraminiferal assemblages have been identified along the core. The distribution of these assemblages records changes in productivity and oxygen conditions during the last 23 ka. The last glacial and deglaciation interval, 23-12.5 ka, shows low diversity and is characterized by the Nonionella iridea assemblage, which includes Cassidulina laevigata, Bolivina dilatata, Nonionoides turgida and Cibicides pachyderma as secondary taxa. This assemblage can be interpreted as a moderately oxygenated mesotrophic environment with episodic pulses of fresh organic matter. Although general mesotrophic conditions prevail, the Last Glacial Maximum shows a more oligotrophic and better oxygenated setting as suggested by higher abundance of epifaunal-shallow infaunal taxa. In contrast, along the Bølling-Allerød eutrophic conditions with higher productivity and lower oxygenation are recorded by a deep infaunal taxa maximum. During the Younger Dryas (YD) and the earliest Holocene (12.5-10.5 ka), the Bolivina dilatata assemblage dominates coinciding with a lower diversity, especially during the YD. This species and the additional taxa of the assemblage (Bolivina spathulata, Bolivina subspinescens, Bulimina marginata, Bolivina variabilis and Uvigerina peregrina) also thrive in mesotrophic environments with fresh organic matter supply and moderate oxygen content. The lower part of the early Holocene (10.5-7.3 ka) is dominated by the Cassidulina obtusa assemblage including Bolivina subspinescens, Bolivina variabilis, Bulimina marginata, Gyroidina altiformis, Nonionella iridea and Quinqueloculina sp. as associated taxa. A highly diverse mesotrophic setting with slightly higher oxygenation can be inferred for this assemblage. This is supported by the higher abundance of epifaunal-shallow infaunal taxa and the presence of G. altiformis and Quinqueloculina sp. Finally, the highly diverse Alabaminella weddellensis assemblage occurs along the upper part of the core (7.3-0 ka) encompassing the upper early Holocene and late Holocene. Additional species of this assemblages are Uvigerina mediterranea, Melonis barleeanus, Cassidulina laevigata, Cassidulina obtusa and Uvigerina peregrina. This assemblage suggests mesotrophic conditions with a more continuous organic matter supply as pointed out by the occurrence of U. mediterranea and the intermediate infaunal M. barleeanus that can feed from more degraded organic matter. The onset of this assemblage around 7.3 ka might be related to the establishment of the semi-permanent productive ‘Malaga cell” dated at 7.7 ka.