dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Intrinsic vs. extrinsic controls on channel evolution in a sub-tropical river, Australia
VerfasserIn James Daley, Jacky Croke, Chris Thompson, Tim Cohen, Mark Macklin, Ashneel Sharma
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250133198
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-13780.pdf
 
Zusammenfassung
Palaeohydrological research provides valuable insights to the understanding of short- and long-term fluvial dynamics in response to climate change and tectonic activity. In landscapes where tectonic activity is minimal fluvial archives record long-term changes in sediment and discharge dynamics related to either intrinsic or extrinsic controls. Isolating the relative controls of these factors is an important frontier in this area of research. Advances in geochronology, the acquisition of high resolution topographic data and geomorphological techniques provide an opportunity to assess the relative importance of intrinsic and extrinsic controls on terrace and floodplain formation. This study presents the results of detailed chrono-stratigraphic research in a partly confined river valley in subtropical southeast Queensland. River systems within this region are characterized by high hydrological variability and have a near-ubiquitous compound channel morphology (macrochannel) where Holocene deposits are inset within late Pleistocene terraces. These macrochannels can accommodate floods up to and beyond the predicted 100-year flood. Using single grain optically stimulated luminescence and radiocarbon analyses, combined with high resolution spatial datasets, we demonstrate the nature of fluvial response to major late Quaternary climate change. A large proportion of the valley floor is dominated by terrace alluvium deposited after the Last Glacial Maximum (LGM) (17 – 13 ka) and overlies basal older Pleistocene alluvium. Preliminary results suggest a phase of incision occurred at 10 ka with the formation of the large alluvial trench. The Holocene floodplain is dominated by processes of catastrophic vertical accretion and erosion (cut-and-fill) and oblique accretion at the macrochannel margins. The consistency in ages for the terraces and subsequent incision suggests a uniform network response. Alluvial sediments and channel configuration in this compound and complex landscape represent a discernable response to long-term climate change, high climate variability and extreme weather events.