dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The effects of mulching on soil erosion by water. A review based on published data
VerfasserIn Massimo Prosdocimi, Antonio Jordán, Paolo Tarolli, Artemi Cerdà
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250133025
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-13590.pdf
 
Zusammenfassung
Among the soil conservation practices that have been recently implemented, mulching has been successfully applied in different contexts (Jordán et al., 2011), such as agricultural lands (García-Orenes et al. 2009; Prosdocimi et al., 2016), fire-affected areas (Prats et al., 2014; Robichaud et al., 2013) and anthropic sites (Hayes et al., 2005), to reduce water and soil losses rates. In these contexts, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas of the world (Cerdà et al., 2009; Cerdan et al., 2010; Sadeghi et al., 2015). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as unsustainable farming practices and land-use changes on large scales (Cerdà, 1994; Montgomery, 2007). Although the beneficial effects of mulching are known, their quantification needs further research, especially in those areas where soil erosion by water represents a severe threat. In literature, there are still some uncertainties about how to maximize the effectiveness of mulching in the reduction of soil and water loss rates. First, the type of choice of the vegetative residues is fundamental and drives the application rate, cost, and consequently, its effectiveness. Second, it is important to assess application rates suitable for site-specific soil and environment conditions. The percentage of area covered by mulch is another important aspect to take into account, because it has proven to influence the reduction of soil loss. And third, the role played by mulching at catchment scale, where it plays a key role as barrier for breaking sediment and runoff connectivity. Given the seriousness of soil erosion by water and the uncertainties that still concern the correct use of mulching, this work aims to evaluate the effects of mulching on soil erosion rates and water losses in agricultural lands, post-fire affected areas and anthropic sites. Data published in literature have been collected. The results proved the beneficial effects of mulching on soil erosion by water in all the contexts considered, with reduction rates in average sediment concentration, soil loss and runoff volume that, in some cases, exceeded 90%. Furthermore, in most cases, mulching confirmed to be a relatively inexpensive soil conservation practice that allowed to reduce soil erodibility and surface immediately after its application. References Cerdà, A., 1994. The response of abandoned terraces to simulated rain, in: Rickson, R.J., (Ed.), Conserving Soil Resources: European Perspective, CAB International, Wallingford, pp. 44-55. Cerdà, A., Flanagan, D.C., Le Bissonnais, Y., Boardman, J., 2009. Soil erosion and agriculture. Soil & Tillage Research 106, 107-108. Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerwald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. García-Orenes, F., Roldán A., Mataix-Solera, J, Cerdà, A., Campoy M, Arcenegui, V., Caravaca F. 2009. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28: 571-579. Hayes, S.A., McLaughlin, R.A., Osmond, D.L., 2005. Polyacrylamide use for erosion and turbidity control on construction sites. Journal of soil and water conservation 60(4):193-199. Jordán, A., Zavala, L.M., Muñoz-Rojas, M., 2011. Mulching, effects on soil physical properties. In: Gliński, J., Horabik, J., Lipiec, J. (Eds.), Encyclopedia of Agrophysics. Springer, Dordrecht, pp. 492-496. Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. PNAS 104, 13268–13272. Prats, S.A., dos Santons Martins MA, Malvar MC, Ben-Hur M, Keizer JJ. 2014. Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion. Science of the Total Environment 468: 464-474. Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà A., 2016. The immediate effectiveness of barley Straw mulch in reducing soil erodibility and Surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547: 323-330. Robichaud, P.R., Lewis, S.A., Wagenbrenner, J.W., Ashmun, L.E., Brown, R.E., 2013. Post-fire mulching for runoff and erosion mitigation. Part I: Effectiveness at reducing hillslope erosion rates. Catena 105: 75-92. Sadeghi, S.H.R., Gholami, L., Homaee, M., Khaledi Darvishan, A., 2015. Reducing sediment concetration and soil loss using organic and inorganic amendments at plot scale. Soild Earth 6: 1-8.