dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency
VerfasserIn Estanislao Pujades, Sarah Bodeux, Philippe Orban, Alain Dassargues
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250132737
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-13271.pdf
 
Zusammenfassung
Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.