dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel An analysis of geoid determination based on terrestrial observations of the radial gravity potential derivatives
VerfasserIn Michal Šprlák, Jitka Hájková, Martin Pitonak, Pavel Novak, Robert Tenzer
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250132455
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-12964.pdf
 
Zusammenfassung
In this contribution we analyze geoid determination assuming terrestrial data in the form of the first-, second- and third-order radial gravity potential derivatives are available. First-order radial gravity potential derivatives are now routinely observed by gravimeters, while new-generation sensors for observing the higher-order gravity potential derivatives are under development and may be exploited for gravity field mapping campaigns in the future. From the mathematical point of view we exploit integral transformations of the three observables onto geoid undulation in spherical approximation. Firstly, we formulate practical geoid estimators for each of the three gravity field observables. The estimators are composed of two terms, i.e., the truncated integration of the terrestrial data and the effect of the distant zones. Secondly, the global root mean square errors of the estimators are derived. The global root mean square errors are influenced by the accuracy of the terrestrial data, performance of the spherical harmonic coefficients exploited for evaluation of the distant zones and the omission error. Thirdly, the three error sources are analyzed and compared between the three gravity field observables. Also possibilities and requirements to determine geoid with an accuracy of 1 cm are discussed.