dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait
VerfasserIn Riccardo Droghei, Federico Falcini, Eleonora Martorelli, Daniele Casalbore, Renzo Mosetti, Ettore Salusti, Gianmaria Sannino, Rosalia Santoleri, Francesco Chiocci
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250132252
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-12742.pdf
 
Zusammenfassung
Joint marine geology and physical oceanography studies seek to demonstrate the inherited connection between seafloor sedimentary processes and seawater dynamics in a fruitful exchange. While seafloor morphology highlights the long-term action of bottom currents, oceanographic models attempt to explain and predict morphogenetic processes and sedimentary pattern at the seafloor [Blodeaux, 2001; Martorelli et al., 2010; Belde et al., 2015]. A sand waves field we observed off the Messina Strait (Mediterranean Sea) give us the opportunity to demonstrate the value of such a multidisciplinary approach. We interpret these sand-waves as formed by tidal-induced internal solitary waves (ISWs) that generate within the Strait [Alpers and Salusti, 1983; Sapia and Salusti; 1987; Artale et al., 1990; Bradt et al., 1999]. We hypothesize that the deflected pattern (i.e., the depth-dependent orientation) of these sand waves is due to refraction of ISWs occurring at the interface between the Levantine Intermediate Water (LIW) and the Modified Atlantic Water (MAW), caused by interaction with a topographic mound; while the motion of sediment is caused by the bottom velocity field associated with the ISW trough. Both numerical and in situ data provide hints regarding the formation of the observed geometries and give useful information about their dynamics and migration rate. We believe that our work represents an innovative and promising link between the geological and oceanographic communities, adding some insights on the role of ISWs on sedimentary process and the structure of continental margins [Puig et al, 2004; Haren et al., 2013]. References: Blondeaux, P. (2001). Mechanics of coastal forms. Annual Review of Fluid Mechanics, 33(1), 339-370. Martorelli, E., Falcini, F., Salusti, E., & Chiocci, F. L. (2010). Analysis and modeling of contourite drifts and contour currents off promontories in the Italian Seas (Mediterranean Sea). Marine Geology, 278(1), 19-30. Belde, J., Back, S., & Reuning, L. (2015). Three‐dimensional seismic analysis of sediment waves and related geomorphological features on a carbonate shelf exposed to large amplitude internal waves, Browse Basin region, Australia. Sedimentology, 62(1), 87-109. Alpers, W., & Salusti, E. (1983). Scylla and Charybdis observed from space. Journal of Geophysical Research: Oceans (1978–2012), 88(C3), 1800-1808. Sapia, A., & Salusti, E. (1987). Observation of nonlinear internal solitary wave trains at the northern and southern mouths of the Strait of Messina. Deep Sea Research Part A. Oceanographic Research Papers, 34(7), 1081-1092. Artale, V., Levi, D., Marullo, S., & Santoleri, R. (1990). Analysis of nonlinear internal waves observed by Landsat thematic mapper. Journal of Geophysical Research: Oceans (1978–2012), 95(C9), 16065-16073. Brandt, P., Rubino, A., Quadfasel, D., Alpers, W., Sellschopp, J., & Fiekas, H. V. (1999). Evidence for the influence of Atlantic-Ionian stream fluctuations on the tidally induced internal dynamics in the Strait of Messina. Journal of physical oceanography, 29(5), 1071-1080. Puig, P., Palanques, A., Guillén, J., & El Khatab, M. (2004). Role of internal waves in the generation of nepheloid layers on the northwestern Alboran slope: implications for continental margin shaping. Journal of Geophysical Research: Oceans (1978–2012), 109(C9). Haren, H., Ribó, M., & Puig, P. (2013). (Sub‐) inertial wave boundary turbulence in the Gulf of Valencia. Journal of Geophysical Research: Oceans, 118(4), 2067-2073.