dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel HCHO and NO2 MAXDOAS retrieval strategies harmonization: Recent results from the EU FP7 project QA4ECV
VerfasserIn Gaia Pinardi, Enno Peters, Francois Hendrick, Clio Gielen, Michel Van Roozendael, Andreas Richter, Ankie Piters, Thomas Wagner, Yang Wang, Theano Drosoglou, Alkis Bais, Shanshan Wang, Alfonso Saiz-Lopez
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250131717
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-12154.pdf
 
Zusammenfassung
During the last decade, it has been extensively demonstrated that MAXDOAS is a useful and reliable technique to retrieve integrated column amounts of tropospheric trace gases and aerosols, as well as information on their vertical distributions. Since it is based on optical remote-sensing in the UV-visible region like nadir backscatter space-borne sensors, MAXDOAS is also increasingly recognized as a reference technique for validating satellite nadir observations of air quality species like NO2 and HCHO. However, building up an harmonized network of MAXDOAS spectrometers requires significant efforts in terms of common retrieval strategies and best-practices definitions. Within the EU FP7 project QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/), harmonization activities have been initiated focusing on the two main steps of the MAXDOAS retrieval, i.e. the DOAS spectral fit providing the so-called differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs to vertical profiles and/or vertical column densities (VCDs). Regarding the first step, the DOAS settings for HCHO and NO2 are optimized through an intercomparison exercise of slant column retrievals involving 15 groups of the MAXDOAS community including the QA4ECV partners, and based on the radiance spectra acquired during the MAD-CAT campaign held in Mainz (Germany) in June-July 2013 (see http://joseba.mpch-mainz.mpg.de/mad_cat.htm). The harmonization of the second step is done through the application of an AMF (aim mass factor) look-up table (LUT) approach on the optimized NO2 and HCHO DSCDs. The AMF LUTs depend on entry parameters like SZA, elevation and relative azimuth angles, wavelength, boundary layer height, AOD, and surface albedo. The advantages and drawbacks of the LUT approach are illustrated at several stations through comparison of the derived VCDs with those retrieved using the more sophisticated Optimal-Estimation-based profiling method. Recommendations for both MAXDOAS retrieval steps will be given in conclusion.