dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Investigation of NO2 vertical distribution from satellite data by using two NO2 DOAS retrievals
VerfasserIn Lisa K. Behrens, Andreas Hilboll, Andreas Richter, Enno Peters, John P. Burrows
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250131617
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-12045.pdf
 
Zusammenfassung
NO2 is an important indicator for air pollution from anthropogenic as well as natural sources. NOx emission sources and their horizontal distribution are well known from satellite measurements. In contrast, knowledge of the vertical NO2 distribution is only limited. To address this issue we developed a new NO2 differential optical absorption spectroscopy (DOAS) retrieval in the UV spectral range for satellite observations from the GOME-2 instrument on board EUMETSAT’s MetOp-A satellite. This new UV NO2 retrieval is compared to a common NO2 retrieval in the visible spectral range. Here we show that by using retrievals in the UV and visible, sensitivity to the vertical distribution of NO2 can be achieved in satellite measurements. Box air mass factor calculations show that sensitivity below 9km is clearly higher in the visible spectral range whereas above 9km, the sensitivity is somewhat higher in the UV range. Due to the higher sensitivity of the visible spectral range closer to the ground, the NO2 slant columns derived from the visible spectral range are mostly higher than in the UV spectral range. Nevertheless, our new NO2 retrieval and the common NO2 retrieval from the visible spectral range show a similar horizontal distribution. In both spectral ranges, well known NO2 signals over highly polluted areas, e.g., China or biomass burning areas like Africa south of the equator can be observed. However in some areas, NO2 signals clearly visible in the visible spectral range cannot be detected in the UV spectral range, such as in Africa north of the equator over the biomass burning regions. From the differences in NO2 slant columns, we can gain insight into the vertical distribution of NO2. By using air mass factors, slant columns can be converted into vertical columns. For air mass factor calculations, an a priori NO2 profile is needed from model simulations, here the MACC2 interim reanalysis fields. If the model simulates the NO2 profile with correct height dependency, there should be no differences in NO2 vertical columns for the two wavelength ranges. Therefore, we can gain additional information about the NO2 height dependency from a comparison of vertical columns. In some regions the vertical columns agree well. However, there are also regions with large differences in NO2 vertical columns, especially in winter season.