dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Coupling river hydrochemical information with catchment properties for multi-scale-analysis of lateral matter fluxes in the Earth system
VerfasserIn Jens Hartmann, Ronny Lauerwald, Nils Moosdorf
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250131493
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-11911.pdf
 
Zusammenfassung
Over the last decade the number of regional to global scale studies of river chemical fluxes and their steering factors increased rapidly, entailing a growing demand for appropriate databases to calculate mass budgets, to calibrate models, or to test hypotheses [1, 2]. Research applying compilations of hydrochemical data are related to questions targeting different time and spatial scales, as for example the annual to centennial scale. In focus are often the alteration of land-ocean matter fluxes due anthropogenic disturbance, the climate sensitivity of chemical weathering fluxes [3], or nutrient fluxes and their evolution [2, 4]. We present an overview of the GLObal RIver CHemistry database GLORICH, which combines an assemblage of hydrochemical data from varying sources with catchment characteristics of the sampling locations [1]. The information provided include e.g. catchment size, lithology, soil, climate, land cover, net primary production, population density and average slope gradient. The data base comprises 1.27 million samples distributed over 17,000 sampling locations [1]. It will be shown how large assemblages of data are useful to target some major questions about the alteration of land ocean element fluxes due to climate or land use change while coupling hydrochemical data with catchment properties in a homogenized database. An extension by isotopic data will be in the focus of future work [c.f. 5]. Further, applications in climate change studies for understanding feedbacks in the Earth system will be discussed [6]. References: [1] Hartmann, J., Lauerwald, R., & Moosdorf, N. (2014). A brief overview of the GLObal RIver CHemistry Database, GLORICH. Procedia Earth and Planetary Science, 10, 23-27. [2] Hartmann, J., Levy, J., & Kempe, S. (2011). Increasing dissolved silica trends in the Rhine River: an effect of recovery from high P loads?. Limnology, 12(1), 63-73. [3] Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., & West, A. J. (2014). Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chemical Geology, 363, 145-163. [4] Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L., Wolf‐Gladrow, D. A., Dürr, H.H. & Scheffran, J. (2013). Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Reviews of Geophysics, 51(2), 113-149. [5] Bataille, C. P., Brennan, S. R., Hartmann, J., Moosdorf, N., Wooller, M. J., & Bowen, G. J. (2014). A geostatistical framework for predicting variations in strontium concentrations and isotope ratios in Alaskan rivers. Chemical Geology, 389, 1-15. [6] Goll, D. S., Moosdorf, N., Hartmann, J., & Brovkin, V. (2014). Climate‐driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance. Geophysical Research Letters, 41(10), 3553-3558.