dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The impact of pyrogenic C on soil functioning : a study using ancient killn soil as a model system
VerfasserIn Cornelia Rumpel, Christophe Naisse, Phuong Thi Ngo, Bernard Davasse, Cyril Girardin, Abad Chabbi
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250129921
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-10096.pdf
 
Zusammenfassung
The long-term effect of pyrogenic C on the physicochemical and biological functioning of soils is poorly understood. We used ancient killn soils as model systems in order to investigate soil properties after four centuries of pyrogenic C addition. In particular we were interested in the effect of the pyrogenic C amendment on the (micro-)biological functioning of the soil. We analysed for physicochemical properties, C mineralisation as well as C dynamics following input of 13C labelled charcoal and plant residues. Our results show compared to soil without any addition, that pyrogenic C amendment led in the long term to more rapid decomposition of the new materials. The decomposition rate was increased by about 17%. In contrast,a negative priming effect reduced soil organic carbon mineralization by about 30%. Soil physicochemical poperties, i.e. clay content, cation exchange and nutrient availability were durably improved in soil amended with pyrogenic C four centuries ago. These changes probably promoted higher microbial activity and thus intense mineralization when new plant litter was added. On the contrary, charcoal was degraded at a similar rate compared to soil without pyrogenic C amendment. Thus no specific adaptation of microorganism to charcoal degradation was observed even after several centuries. The negative priming effect induced by charcoal additiion can be due to a physical protection of the soluble carbon fraction at the surfaces of new charcoal. In contrast, the negative priming effect induced by plant residue input may be more likely due to a shift of substrate utilisation by microbial communities evolving in a nutrient-rich environment. Our results demonstrate that pyrogenic C addition modifies the carbon dynamic of soils in the long-term. We propose a conceptual model accounting for the alterations of soil functioning in the long term after pyrogenic C addition.