dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel 26Al - 10Be cosmogenic nuclide isochron burial dating in combination with luminescence dating of two Danube terraces
VerfasserIn Stephanie Neuhuber, Sandra Braumann, Christopher Lüthgens, Markus Fiebig, Philipp Häuselmann, Jörg Schäfer
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250129583
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-9718.pdf
 
Zusammenfassung
The Quaternary sediment record in the Vienna Basin is influenced by two main factors: (1) the tectonic development of a pull apart basin along a sinistral strike slip fault system between the Eastern Alps and the West Carpathians and by (2) strongly varying sediment supply during the Plio- and Pleistocene. From the Late Pannonian (8.8 Ma) onward a large-scale regional uplift (Decker et al., 2005) controls terrace formation in the Vienna Basin. The main sediment supply into the Vienna Basin originates from the Danube, and subordinately from tributaries to the south such as Piesting, Fischa, Leitha and from the north by the river March. Today the Danube forms a large floodplain that is bordered to the north by one large Pleistocene terrace, the Gänserndorf Terrace that is situated 17 m above todays water level. Farther to the east a smaller terrace, the Schlosshof Terrace, reaches 25 m above todays water level. These terrace levels are tilted by movement of underlying blocks (Peresson, 2006). Both, the Schlosshof and Gänserndorf terraces consist of successions of up to 2 m thick gravel beds with intercalated sand layers or -lenses that may locally reach thicknesses up to 0.8 m. At each terrace one gavel pit was selected to calculate the time of terrace deposition by luminescence dating in combination with 26Al/10Be cosmogenic nuclide isochrone dating (Balco and Rovery, 2008). Five quartz stones from the base of each terrace were physically and chemically processed to obtain Al and Be oxides for Acceleration Mass Spectrometry. Sand samples for luminescence dating were taken above the cosmogenic nuclide samples from the closest suitable sand body. Decker et al., 2005. QSR 24, 307-322 Peresson, 2006 Geologie der österreichischen Bundesländer Niederösterreich 255-258 Balco and Rovey, 2008. AJS 908, 1083-1114 Thanks to FWF P 23138-N19, OMAA 90öu17