dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions
VerfasserIn Michael Rolletter, Hendrik Fuchs, Anna Novelli, Christian Ehlers, Andreas Hofzumahaus
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250129241
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-9322.pdf
 
Zusammenfassung
Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm−3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and IUPAC by up to a factor of 2.6. Our experiments confirm the existence of a water vapour influence similarly to the one reported previously by Sander and Peterson (1984) for a lower total pressure (470 hPa).