dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Constraints on Long-Term Seismic Hazard From Vulnerable Stalagmites
VerfasserIn Katalin Gribovszki, Götz Bokelmann, Péter Mónus, László Tóth, Károly Kovács, Pavel Konecny, Marketa Lednicka, Christoph Spötl, Martin Bednárik, Ladislav Brimich, Erika Hegymegi, Attila Novák
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250129131
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-9202.pdf
 
Zusammenfassung
Earthquakes hit urban centers in Europe infrequently, but occasionally with disastrous effects. Obtaining an unbiased view of seismic hazard (and risk) is therefore very important. In principle, the best way to test Probabilistic Seismic Hazard Assessments (PSHA) is to compare them with observations that are entirely independent of the procedure used to produce PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. Long-term information can in principle be gained from intact stalagmites in natural caves. These formations survived all earthquakes that have occurred, over thousands of years - depending on the age of the stalagmite. Their “survival” requires that the horizontal ground acceleration has never exceeded a certain critical value within that time period. Here we present such a stalagmite-based case study from the Little Carpathians of Slovakia. A specially shaped, intact and vulnerable stalagmite (IVSTM) in Plavecká priepast cave was examined in 2013. This IVSTM is suitable for estimating the upper limit of horizontal peak ground acceleration generated by pre-historic earthquakes. The approach, used in our study, yields significant new constraints on the seismic hazard, as tectonic structures close to Plavecká priepast cave did not generate strong paleoearthquakes in the last few thousand years. A particular importance of this study results from the seismic hazard of two close-by capitals: Vienna and Bratislava.