dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Did a whole-crustal hydrothermal system generate the Irish Zn-Pb orefield?
VerfasserIn J. Stephen Daly, Eszter Badenszki, David Chew, Andreas Kronz, Helen O'Rourke, Martin Whitehouse, Julian Menuge, Riana van den Berg
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250128962
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-9016.pdf
 
Zusammenfassung
Current models[1] for the genesis of the giant Irish Carboniferous-hosted Zn-Pb orefield propose shallow (<10 km depth) hydrothermal circulation within Lower Palaeozoic basement rocks of the Iapetus Suture Zone as the main metal source. However several lines of evidence, e.g., from He[2], S[2,3] and Os[4] isotopes, and the possible role of contemporary volcanism[5] point to deeper, including mantle, fluid source(s) and/or pathways. The Iapetus Suture Zone in Ireland is uniquely favoured to evaluate the scale of hydrothermal circulation because of the presence there of granulite-facies lower crustal xenoliths at four widely separated localities. These were carried to the surface from ~22-28km (and deeper levels) by Lower Carboniferous alkali basaltic lavas and diatremes[6,7]. They provide the only possible direct samples of the lower crust and are of appropriate age. U-Pb zircon geochronology demonstrates that the xenoliths experienced high temperature (>700°C) metamorphism and melting during the Acadian orogeny at ~390Ma and during separate episodes of extension at ~ 381-373Ma and ~362Ma. Sm-Nd garnet dating shows that the lower crust remained hot or was re-heated to ~600°C at ~341Ma during Lower Carboniferous volcanism, also associated with extension and, in part, coincident with the mineralization[1]. Isotopic data from the xenoliths correspond closely to Sr and Nd isotopic analyses of gangue calcite[8] and galena Pb[9] isotopic data from the major ore deposits. While Zn contents of the xenoliths permit them to be metal sources, their mineralogy and texture provide an enriched template and a plausible extraction mechanism. In situ analyses of modally-abundant biotite and garnet show significant enrichment in Zn (and other relevant metals) as well as order of magnitude depletion of Zn during retrograde alteration, providing a metal-release mechanism and pointing to a hydrothermal fluid system operating at least to depths of ~ 25km. References [1] Wilkinson, J.J. & Hitzman, M.W. 2015. The Irish Pb-Zn orefield: The view from 2014. In: Archibald, S.M. and Piercey, S.J. (eds) Current Perspectives on Zinc deposits. Irish Association for Economic Geology, pp. 59-72.; [2] Davidheiser-Kroll, B., Stuart, F.M. & Boyce, A.J. 2014. Mineralium Deposita, 49, 547–553; [3] Elliott, H. 2015. Unpublished PhD thesis, University of Southampton; [4] Hnatyshin, D., Creaser, R.A., Wilkinson, J.J. & Gleeson, S.A. 2015. Geology, 43, 143-146; [5] McCusker, J. & Reed, C. 2013. Mineralium Deposita, 48, 687–695; [6] Van den Berg, R., Daly, J.S. & Salisbury, M.H. 2005. Tectonophysics, 407(1-2), 81–99; [7] Hauser, F., O’Reilly, B.M., Readman, P.W., Daly, J. S. & Van den Berg, R. 2008. Geophysical Journal International 175, 1254-1272; [8] Walshaw, R.D., Menuge, J.F. & Tyrrell, S. 2006. Mineralium Deposita, 41, 803-819; [9] Everett, C.E., Rye, D.M. & Ellam, R.M. 2003. Economic Geology, 98, 31-50 and references therein.