dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Estimation of NOx emissions from the Megacity of Lahore, Pakistan using car MAX-DOAS observations and comparison with OMI satellite data
VerfasserIn Maria Razi, Reza Shaiganfar, Muhammad Fahim Khokhar, Steffen Dörner, Noor Ahmad, Sebastian Donner, Steffen Beirle, Thomas Wagner
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250128939
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-8987.pdf
 
Zusammenfassung
Lahore is a metropolitan city of Pakistan with about more than 10 million inhabitants and thus a strong emission source of atmospheric pollutants. The quantification of these emission sources is usually accomplished by so-called bottom-up inventories, based on the summation of the emissions of individual emission sources for all relevant emission categories. Such inventories are subject to large errors because of uncertainties in the emission estimates for individual sources as well as their numbers and characteristics. Here we present results of a top-down emission inventory for Lahore based on car multi-axis differential optical absorption spectroscopy (car-MAX-DOAS) observations. We performed such measurements around the city on Lahore on six days in December 2015. From the measured spectra we derive the vertically integrated concentration of NO2 along the driving route (the so called tropospheric vertical column density, VCD). By combining these observations with wind data we estimate the total NO2 emissions from the city of Lahore. Since from the measured spectra only NO2 (but not NO) can be retrieved, we convert the NO2 emissions to total NOx (NO2 plus NO) emissions. We also apply corrections for the decay of NOx on the way between the emission source and the location of the measurements. We compare the derived NOx emissions to existing emission inventories. We also compare the spatial distributions of the tropospheric NO2 VCDs observed by car MAX-DOAS with collocated results from satellite observations of the Ozone Monitoring Instrument (OMI).