dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A new method for As(V) removal from waters by precipitation of mimetite Pb5(AsO4)3Cl on Pb-activated zeolite
VerfasserIn Maciej Manecki, Urszula Buszkiewicz
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250128552
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-8551.pdf
 
Zusammenfassung
A new method for removal of arsenate AsO43− ions from aqueous solutions is proposed. The principle of the method stems from precipitation of very insoluble crystalline lead arsenate apatite (mimetite Pb5(AsO4)3Cl) induced by bringing in contact Pb-activated zeolite and As-contaminated water in the presence of Cl−. Zeolite is activated by sorption of Pb2+ followed by washing with water to remove the excess of Pb and to desorbe weakly adsorbed ions. Lead adsorbed on zeolite is bound strong enough to prevent desorption by water but weak enough to undergo desorption induced by heterogeneous precipitation of mimetite nanocrystals on the surface of zeolite. The experiment consisted of two steps. In the first step, aliquots of 0.5 g of natural clinoptilolite zeolite (from Zeocem a.s., Bystré, Slovak Republic) were reacted with 40 mL of solutions containing 20, 100, 500, and 2000 mg Pb/L (pH =4.5; reaction for 30 minutes followed by centrifugation). The amount of Pb sorbed was calculated from the drop of Pb concentration in solution. Centrifuged zeolite was washed three times by mixing with 10 mL of DDI water, followed by centrifugation. No Pb was detected in the water after second washing. Wet pulp resulting from this stage was exposed to solutions containing 70 mg/L Cl− and various concentrations of AsO43− (2 and 100 mg As/L; pH=4). Complete removal of As was observed for 2 mg As/L solutions mixed with zeolite-20 and zeolite-100. The precipitation of mimetite Pb5(AsO4)3Cl in the form of hexagonal crystals ca. 0.25 μm in size was observed using SEM/EDS. This work is partially funded by AGH research grant no 11.11.140.319.