dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modelling the magnetic field in Mercury’s magnetosheath
VerfasserIn David Parunakian, Sergey Dyadechkin, Igor Alexeev, Elena Belenkaya, Maxim Khodachenko, Esa Kallio, Markku Alho
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250128354
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-8337.pdf
 
Zusammenfassung
The main focus of the present work is to estimate the accuracy of the new assimilated model (based on the paraboloid model of magnetosphere by Moscow State University and the 3D hybrid model by Aalto University) for Mercury’s magnetic field in the magnetosheath by comparing its predictions with MESSENGER magnetometer measurements along several typical orbits. The duration of each magnetosheath pass is approximately one hour for dawn-dusk orbits, which is substantially longer than characteristic times of inner magnetospheric processes as well as the time required for solar wind to flow past Mercury’s magnetosphere (approximately 1 min for L ∼ 10RM). Because of that, we need to carefully select the orbits to use from the available array of over 8000 magnetosheath crossings to satisfy the necessary condition of similar solar wind properties in orbit segments incoming and outgoing the magnetosheath. We pay special attention to the differences in the Mercury-solar wind interactions for southward and northward IMF. Dependence of reconnection phenomena on the IMF Bz direction is clearly demonstrated by our assimilated hybrid and paraboloid model simulation runs. We also examine the magnetosheath plasma parameters for signatures of a plasma depletion layer and examine the properties of Mercury’s magnetopause.