dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Long-term assessment of airborne radio-cesium after the Fukushima nuclear accident: re-suspension from soil and vegetation
VerfasserIn Mizuo Kajino, Masahide Ishizuka, Yasuhito Igarashi, Kazuyuki Kita, Chisato Yoshikawa, Masaru Inatsu
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250128189
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-8148.pdf
 
Zusammenfassung
Long-term assessment of Cs-137 re-suspension from contaminated soil and vegetation due to the Fukushima nuclear accident in March 2011 and the on-going emission from the premises of the power plant has been conducted using a numerical simulation, a field experiment on the dust deflation at Namie in the restricted habitation area, and air concentration measurements in and out of the area, Namie and Tsukuba, respectively. The analysis period is one year from December 2012, about one and a half years from the accident, up to December 2013. The surface concentration of Cs-137 at Namie was high in the summer (~1 mBq/m3) and low in the winter (0.1-1 mBq/m3). The Cs-137 concentration was about one order smaller in Tsukuba (0.01-0.1 mBq/m3). The differences in the two sites are consistent between the observation and the simulation. Ishizuka et al. (2016) developed a numerical module of Cs-137 re-suspension associated with dust deflation based on the flux measurement in Namie. Using the module, the simulated Cs-137 from soil had a potential to account for the observed surface concentration in Namie in the winter, but underestimated by 1-2 orders of magnitude in the summer. The Tokyo Electric Power Company assessed the Cs-137 emission from the reactor buildings in 2013 as approximately 1e6 Bq/h. By using the emission rate, the simulation substantially underestimated the observation by 2-3 orders of magnitude in Namie. We simulated the re-suspension from vegetation applying a seasonal variation as a function of the green fraction map, obtained from the database of Chen and Dudhia (2001). With the constant re-suspension rate of 1e-7 [/h], the simulated vegetation re-suspension quantitatively accounted for the observed surface concentration together with its seasonal variation. Still, so far, the re-suspension mechanism has not been fully understood and thus further investigations for the understanding of the mechanisms and its long-term effects on the environment are needed.