dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Forecasting volcanic eruptions: the control of elastic-brittle deformation
VerfasserIn Christopher Kilburn, Robert Robertson, Richard Wall, Alexander Steele
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250125424
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-5005.pdf
 
Zusammenfassung
At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear decrease in inverse-rate with time for VT seismicity, which can be extrapolated to an expected eruption time shortly after the inverse rate becomes zero [3]; and, for extension, it identifies preferred inverse-rate gradients of 0.001-0.01, which can be used to distinguish between physically-meaningful and spurious inverse-rate trends. [1] Kilburn CRJ (2012) J Geophys Res, doi: 10.1029/2011JB008703; [2] Robertson R, Kilburn CRJ (2016) Earth Planet Sci Lett, doi: 10.1016/j.epsl.2016.01.003; [3] Voight B (1988) Nature. 332: 125-130.