dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Spatial and temporal compact equations for water waves
VerfasserIn Alexander Dyachenko, Dmitriy Kachulin, Vladimir Zakharov
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250125005
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-4527.pdf
 
Zusammenfassung
%%%%%%%%%%%%%%%%%%%%%%% file template.tex %%%%%%%%%%%%%%%%%%%%%%%%% % % This is a general template file for the LaTeX package SVJour3 % for Springer journals. Springer Heidelberg 2010/09/16 % % Copy it to a new file with a new name and use it as the basis % for your article. Delete % signs as needed. % % This template includes a few options for different layouts and % content for various journals. Please consult a previous issue of % your journal as needed. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % First comes an example EPS file -- just ignore it and % proceed on the \documentclass line % your LaTeX will extract the file if required % \RequirePackage{fix-cm} % \documentclass{svjour3} % onecolumn (standard format) %\documentclass[smallcondensed]{svjour3} % onecolumn (ditto) %\documentclass[smallextended]{svjour3} % onecolumn (second format) %\documentclass[twocolumn]{svjour3} % twocolumn % %\smartqed % flush right qed marks, e.g. at end of proof % \usepackage{graphicx} % % \usepackage{mathptmx} % use Times fonts if available on your TeX system % % insert here the call for the packages your document requires %\usepackage{latexsym} % etc. % % please place your own definitions here and don't use \def but % \newcommand{}{} % % Insert the name of "your journal" with % \journalname{myjournal} % \begin{document} \newcommand\PW{120mm} %\title{Insert your title here%\thanks{Grants or other notes %about the article that should go on the front page should be %placed here. General acknowledgments should be placed at the end of the article.} %} \title{Spatial and temporal compact equations for water waves} %\titlerunning{Short form of title} % if too long for running head \author{A.I. Dyachenko, D.I. Kachulin and V.E.~Zakharov} %etc. %\authorrunning{Short form of author list} % if too long for running head \institute{A.I Dyachenko \at Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia \\ Novosibirsk State University, 630090, Novosibirsk-90, Russia\\ \email{alexd@itp.ac.ru} % \\ % \emph{Present address:} of F. Author % if needed \and D.I. Kachulin \at Novosibirsk State University, 630090, Novosibirsk-90, Russia \and V.E. Zakharov \at Novosibirsk State University, 630090, Novosibirsk-90, Russia\\ Department of Mathematics, University of Arizona, Tucson, AZ, 857201, USA\\ Physical Institute of RAS, Leninskiy prospekt, 53, Moscow, 119991, Russia } \date{\ } % The correct dates will be entered by the editor \maketitle A one-dimensional potential flow of an ideal incompressible fluid with a free surface in a gravity field is the Hamiltonian system with the Hamiltonian: \begin{eqnarray}\nonumber H &=& \frac{1}{2}\int\!dx\!\int_{-\infty}^\eta |\nabla\phi|^2dz + \frac{g}{2}\int \eta^2\!dx\cr \end{eqnarray} $\phi(x,z,t)$ - is the potential of the fluid, $g$ - gravity acceleration, $\eta(x,t)$ - surface profile Hamiltonian can be expanded as infinite series of steepness: \begin{eqnarray} \label{Ham4} H &=& H_2 + H_3 + H_4 + \dots\cr H_2 &=& \frac{1}{2}\int (g\eta^2 + \psi \hat k\psi) dx, \cr H_3 &=& -\frac{1}{2}\int \{(\hat k\psi)^2 -(\psi_x)^2\}\eta dx,\cr H_4 &=&\frac{1}{2}\int \{\psi_{xx} \eta^2 \hat k\psi + \psi \hat k(\eta \hat k(\eta \hat k\psi))\} dx. \end{eqnarray} %\begin{eqnarray*} %H \!&=& \!\frac{1}{2}\!\!\int \!\!{g\eta^2 \!\!+ \!\psi \hat k\psi} dx % -\frac{1}{2}\!\!\int \!\!\{(\hat k\psi)^2 \!-(\psi_x)^2\}\eta dx +\cr %&+&\frac{1}{2}\!\!\int\!\! \{\psi_{xx} \eta^2 \hat k\psi \!+ \!\psi \hat k(\eta \hat k(\eta \hat k\psi))\} dx +\dots %\end{eqnarray*} where $\hat k$ corresponds to the multiplication by $|k|$ in Fourier space, $\psi(x,t)= \phi(x,\eta(x,t),t)$. This truncated Hamiltonian is enough for gravity waves of moderate amplitudes and can not be reduced. We have derived self-consistent compact equations, both spatial and temporal, for unidirectional water waves. Equations are written for normal complex variable $c(x,t)$, not for $\psi(x,t)$ and $\eta(x,t)$. Hamiltonian for temporal compact equation can be written in $x$-space as following: \begin{equation}\label{SPACE_C} H = \int\!c^*\hat V c \hspace{2pt}dx + \frac{1}{2}\int\!\left [ \frac{i}{4}(c^2 \frac{\partial}{\partial x} {c^*}^2 - {c^*}^2 \frac{\partial}{\partial x} c^2 )- |c|^2 \hat K(|c|^2)\right ]dx \end{equation} Here operator $\hat V$ in K-space is so that $V_k = \frac{\omega_k}{k}$. If along with this to introduce Gardner-Zakharov-Faddeev bracket (for the analytic in the upper half-plane function) \begin{equation}\label{GZF} \partial^+_x \Leftrightarrow ik\theta_k \end{equation} Hamiltonian for spatial compact equation is the following: \begin{eqnarray}\label{H24} &&H=\frac{1}{g}\int\frac{1}{\omega}|c_{\omega}|^2 d\omega +\cr &+&\frac{1}{2g^3}\int|c|^2(\ddot c^*c + \ddot c c^*)dt + \frac{i}{g^2}\int |c|^2\hat\omega(\dot c c^* - c\dot c^*)dt. \end{eqnarray} equation of motion is: \begin{eqnarray}\label{t-space} &&\frac{\partial }{\partial x}c +\frac{i}{g} \frac{\partial^2}{\partial t^2}c =\cr &=& \frac{1}{2g^3}\frac{\partial^3}{\partial t^3} \left[ \frac{\partial^2}{\partial t^2}\left(|c|^2c\right) +2 |c|^2\ddot c +\ddot c^*c^2 \right]+\cr &+&\frac{i}{g^3} \frac{\partial^3}{\partial t^3} \left[ \frac{\partial }{\partial t}\left( c\hat\omega |c|^2\right) + \dot c \hat\omega |c|^2 + c \hat\omega\left(\dot c c^* - c\dot c^*\right) \right]. \end{eqnarray} It solves the spatial Cauchy problem for surface gravity wave on the deep water. Main features of the equations are: \begin{itemize} \item Equations are written for complex normal variable $c(x,t)$ which is analytic function in the upper half-plane \item Hamiltonians both for temporal and spatial equations are very simple \item It can be easily implemented for numerical simulation \end{itemize} The equations can be generalized for "almost" 2-D waves like KdV is generalized to KP. This work was supported by was Grant "Wave turbulence: theory, numerical simulation, experiment" \#14-22-00174 of Russian Science Foundation. \end{document}