dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Physical properties of the Atlantic - Arctic water exchange formation. Modelling and analysis
VerfasserIn Sergey Moshonkin, Anatoly Gusev, Alexey Bagno, Vladimir Zalesny
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250124471
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-3914.pdf
 
Zusammenfassung
Physical mechanisms of water exchange between North Atlantic (NA) and Arctic Oceans (AO) in 1958–2009 are analyzed using results of numerical experiments with the eddy-permitting ocean circulation model INMOM (Institute of Numerical Mathematics Ocean Model). Changes of heat and salt transports by West Spitsbergen and East Greenland currents caused by atmospheric forcing produce the baroclinic modes of velocity anomalies in the layer 0–300m, stabilizing ocean response on the atmospheric forcing, which stimulates keeping water exchange between NA and AO at the certain climatological level. We revealed the quick response of dense water outflow by near-bottom current in the deep NA layers through the Denmark Strait at monthly timescale on the North Atlantic oscillation (NAO) index change, as well as the response at the scale 39 months. The quick response on NAO is broken in 1969–1978, which is caused by the Great Salinity Anomaly. Transverse oscillations of the Norwegian current front have the great influence on the formation of the intermediate dense waters of Greenland and Norwegian Seas (GNS). Dense water outflow to the NA deep layers through the Faroe Channels with the time lag of 1 year respond to the transverse oscillations of the front. The mass transport of by near-bottom current through Faroe Channels to the NA can be used as the integral index of formation and discharge of new high-density water portions generated due to mixing of salt warm Atlantic waters and freshened cold Arctic waters in GNS. The research was supported by the Council on the Russian Federation President Grants (grant № MK-3241.2015.5)