dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Effects of inorganic electron acceptors on methanogenesis and methanotrophy and on the community structure of bacteria and archaea in sediments of a boreal lake
VerfasserIn Antti J. Rissanen, Anu Karvinen, Hannu Nykänen, Sari Peura, Marja Tiirola, Anita Mäki, Paula Kankaala
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250124309
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-3726.pdf
 
Zusammenfassung
Lake sediments are globally significant sources of CH4 to the atmosphere, but the factors controlling the production and consumption of CH4 in these systems are understudied. Increasing availability of electron acceptors (EA) (other than CO2) in sediments can decrease or even suppress CH4 production by diverting the electron flow (from H2 and organic substances) from methanogenic to other anaerobic respiration pathways. However, whether these changes in microbial function extend down to changes in the structure of microbial communities is not known. Also anaerobic oxidation of methane (AOM) could be enhanced by increased availability of EAs (SO42−, NO3−, Fe3+ and Mn4+), but information on the role of this process in lake sediments is scarce. We studied the effects of inorganic EAs on the potential for CH4 production and consumption and on the structure of microbial communities in sediments of a boreal lake. Anoxic slurries of sediment samples collected from two depths (0 – 10 cm; 10 – 30 cm) of the profundal zone of a boreal, mesotrophic Lake Ätäskö, were amended with 1) CH4 or with CH4 and either 2) 10 mM Mn4+, 3) 10 mM Fe3+, 4) O2 or 5) CH2F2 (inhibitor of aerobic methane oxidation) and incubated at +10˚ C for up to 4 months. Furthermore, slurries from the 10 – 30 cm layer were amended with CH4 and either 6) 2 mM NO3− or 7) 2 mM SO42− and incubated at +4 ˚ C for up to 14 months. The processes were measured using 13C-labelling and by concentration measurements of CH4 and CO2. Effects of treatments 1-3 on microbial communities were also analysed by next-generation sequencing of 16S rRNA, as well as methyl coenzyme-M reductase gene amplicons and mRNA transcripts. CH4 production (max. 83 nmol gdw−1d−1) took place in the anaerobic treatments but was generally decreased by the addition of NO3−, SO42−, Fe3+ and Mn4+. Although the structure of sediment archaeal community was resistant to Fe3+/Mn4+ - additions, slight changes in the structure of bacterial community occurred. Besides decreasing the availability of methanogenic substrates, the Mn4+/Fe3+ - induced changes in the bacterial community also probably decreased the H2:acetate – ratio in the substrate pool. This led to increase in the relative activity (mRNA level) of some operational taxonomic units assigned to aceticlastic Methanosaetaceae and decrease in the relative activity of hydrogenotrophic Methanoregulaceae in the sediment. CH4 oxidation (0.02 - 0.30 nmol gdw−1d−1 in anaerobic and 18 - 73 nmol gdw−1d−1in aerobic treatments) took place without EA additions and was enhanced only by O2. This suggests decoupling of the process from the reduction of other inorganic EAs. The results also indicate that Fe3+/Mn4+ - reduction did not increase CH4 oxidation via increased availability of SO42− by cryptic sulfur cycle or via increased availability of organic EAs. Furthermore, ANME – archaea were only ≤ 3% of sediment archaeal community and their relative activity was decreased during incubations. Thus, EA driving CH4 oxidation in the anoxic sediments of the lake remains unknown or the process was methanogen-driven via trace methane oxidation.