dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A multi-layer, closed-loop system for continuous measurement of soil CO2 concentrations and its isotopic signature applied in a beech and a pine forest
VerfasserIn Hubert Jochheim, Stephan Wirth
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250123767
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-3072.pdf
 
Zusammenfassung
We present a setup of measurement devices that allows the application of the soil CO2 gradient approach for CO2 efflux calculation in combination with the analysis of isotopic signature (δ13C). Vertical profiles of CO2 concentrations in air-filled pores of soil were measured using miniature NDIR sensors within a 16-channel closed-loop system where equilibrium with soil air can be achieved using hydrophobic, gas-permeable porous polypropylene tubes circulating gas using peristaltic pumps. A 16-position multiplexer allows the connection to an isotopic CO2 analyser. This setup was applied at two ICP Forest intensive monitoring sites, a beech and a pine forest on sandy soils located in Brandenburg, Germany. CO2 concentrations in air-filled pores of soils were measured on top of soil surface, below the humus layer, and in 10cm, 20cm, 30cm and 100 cm depths every 30 min. At both sites, soil moisture and temperature were measured continuously in the respective soil depths in identical time intervals. Isotopic signatures of soil CO2 was detected by measurement campaigns. After three years of measurements, our results provided evidence for distinct seasonal dynamics and vertical gradients of soil CO2 concentration and δ13C values. Varying impacts of soil temperature and moisture on CO2 concentration were revealed, highlighting its impact on soil physical and soil biological controls. Higher levels of CO2 concentration and a more distinct seasonal dynamics were detected at the beech site compared to the pine site. The collected data provide a suitable database for calculation of CO2 efflux and modelling of soil respiration.