dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modeling of subglacial water pressure on Russell glacier, toward a better understanding of the relation between meltwater availability and ice dynamics.
VerfasserIn Basile de Fleurian, Mathieu Morlighem, Hélène Seroussi, Eric Rignot
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250123558
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-2838.pdf
 
Zusammenfassung
Basal sliding is the main control on outlet glaciers velocity. This sliding is mainly driven by the water pressure at the base of the glaciers. The ongoing increase in surface melt of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here, we examine the case of Russell glacier, West Greenland, where a remarkably extensive set of observations have been gathered. These observations suggest that the increase in runoff has no impact on the annual velocity on the lower part of the drainage basin, but yield an acceleration of ice flow above the Equilibrium Line Altitude (ELA). It is believed that this two distinct behaviours are due to different evolutions of the subglacial draining system during and after the melt season. We use here a high-resolution new generation subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the possible causes of these distinct behaviours. The model results confirm the existence of two distinct behaviours of the subglacial water pressure, an increase in the mean annual water pressure at high elevation and a stagnation of these same mean annual pressures below the ELA. The increase in meltwater at the lower elevation leads to a more developed efficient drainage system and the overall steadiness of the annual velocities, but, at higher elevation the drainage system remains mainly inefficient and is therefore strongly sensitive to the increase in meltwater availability.