dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel MESSENGER Observations of Asymmetries at Mercury’s Magnetotail Current Sheet
VerfasserIn Gangkai Poh, James Slavin, Xianzhe Jia, Jim Raines, Wei-Jie Sun, Kevin Genestreti, Andy Smith, Daniel Gershman, Brian Anderson
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250123050
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-2227.pdf
 
Zusammenfassung
Dawn-dusk asymmetries in the Earth’s magnetotail current sheet have been observed and remain an active area of research. With an internal magnetic dipole field structure similar to Earth’s, similar dawn-dusk asymmetries might be expected in Mercury’s magnetotail current sheet. However, no observation of dawn-dusk asymmetries has been reported in the structure of Mercury’s magnetotail. Using 4 years of MESSENGER’s magnetic field and plasma data, we analyzed 319 current sheet crossings. From the polarity of Bz in the cross-tail current sheet, we determined that MESSENGER is on closed field lines about 90% of the time. During the other 10% MESSENGER observed negative Bz indicating that it was tailward of the Near Mercury Neutral Line (NMNL). The Bz magnetic field is also observed to be higher at the dawnside than the duskside of the magnetotail current sheet by approximately a factor of three. Further the asymmetry decreases with increasing downstream distance. A reduction (enhancement) in Bz should correspond to a more (less) stretched and thinned (thickened) current sheet. Analysis of current sheet thickness based upon MESSENGER’s observations confirms this behavior with mean current sheet thickness and Bz intensity having dawn-dusk asymmetries with the same sense. Plasma β in the current sheet also exhibits a dawn-dusk asymmetry opposite to that of Bz. This is consistent with expectations based on MHD stress balance. Earlier studies had shown a dawn-dusk asymmetry in the heavy ion in Mercury’s magnetotail. We suggest that this enhancement of heavy ions in the duskside current sheet, due to centrifugal acceleration of ions from the cusp and gradient-curvature drift from the NMNL, may provide a partial explanation of the dawn-dusk current sheet asymmetries found in this study.