dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Synthetic ground-motion simulation using a spatial stochastic model with slip self-similarity: Toward near-source ground-motion validation
VerfasserIn Ya-Ting Lee, Kuo-Fong Ma, Ming-Che Hsieh, Yin-Tung Yen, Yu-Sheng Sun
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250122918
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-2063.pdf
 
Zusammenfassung
Near-fault ground motion is a key to understand the seismic hazard along the fault, and is a challenge by the approach of ground motion prediction equation. This paper presents a developed stochastic-slip-scaling source model, a spatial stochastic model with slip scaling of the slipped area, toward ground motion simulation. We considered the near-fault ground motion of the 1999 Chi-Chi earthquake (Mw 7.7) in Taiwan, which having the most massive near-fault data of a disaster earthquake, as a reference for validation. Including the developed stochastic-slip-scaling source model, two scenario source models, mean-slip model, characteristic-asperity model were also used for the examination on the near-fault ground motion. We simulated synthetic ground motion through 3D waveforms and validated these simulations by using observed data and the ground-motion prediction equation (GMPE) for Taiwan earthquakes. The mean slip and characteristic asperity scenario source models over-predicted the near-fault ground motion. The stochastic-slip-scaling model proposed in this paper is more accurately approximated to the near-fault motion compared with the GMPE and observations. This is the first study to incorporate slipped-area scaling in a stochastic slip model. The proposed model can generate scenario earthquakes for predicting ground motion.