dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Coordinated radar observations of plasma wave characteristics in the auroral F region
VerfasserIn R. A. Makarevich, W. A. Bristow
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 32, no. 7 ; Nr. 32, no. 7 (2014-07-29), S.875-888
Datensatznummer 250121087
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-32-875-2014.pdf
 
Zusammenfassung
Properties of decameter-scale plasma waves in the auroral F region are investigated using coordinated observations of plasma wave characteristics with the Kodiak HF coherent radar (KOD) and Poker Flat Incoherent Scatter Radar (PFISR) systems in the Alaskan sector. We analyze one event on 14 November 2012 that occurred during the first PFISR Ion-Neutral Observations in the Thermosphere (PINOT) campaign when exceptionally good F region backscatter data at 1 s resolution were collected by KOD over the wide range of locations also monitored by PFISR. In particular, both radar systems were observing continuously along the same magnetic meridian, which allowed for a detailed comparison between the line-of-sight (l-o-s) velocity data sets. It is shown that l-o-s velocity correlation for data points strictly matched in time (within 1 s) depends strongly on the number of ionospheric echoes detected by KOD in a given post-integration interval or, equivalently, on the KOD echo occurrence in that interval. The l-o-s velocity correlations reach 0.7–0.9 for echo occurrences exceeding 70%, while also showing considerable correlations of 0.5–0.6 for occurrences as low as 10%. Using the same approach of strictly matching the KOD and PFISR data points, factors controlling coherent echo power are investigated, focusing on the electric field and electron density dependencies. It is demonstrated that the signal-to-noise ratio (SNR) of F region echoes increases nearly monotonically with an increasing electric field strength as well as with an increasing electron density, except at large density values, where SNR drops significantly. The electric field control can be understood in terms of the growth rate of the gradient-drift waves being proportional to the convection drift speed under conditions of fast-changing convection flows, while the density effect may involve over-refraction at large density values and radar backscatter power proportionality to the perturbation density.
 
Teil von