dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Influence of solar forcing, climate variability and modes of low-frequency atmospheric variability on summer floods in Switzerland
VerfasserIn J. C. Peña, L. Schulte, A. Badoux, M. Barriendos, A. Barrera-Escoda
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 19, no. 9 ; Nr. 19, no. 9 (2015-09-10), S.3807-3827
Datensatznummer 250120804
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-19-3807-2015.pdf
 
Zusammenfassung
The higher frequency of severe flood events in Switzerland in recent decades has given fresh impetus to the study of flood patterns and their possible forcing mechanisms, particularly in mountain environments. This paper presents a new index of summer flood damage that considers severe and catastrophic summer floods in Switzerland between 1800 and 2009, and explores the influence of external forcings on flood frequencies. In addition, links between floods and low-frequency atmospheric variability patterns are examined. The flood damage index provides evidence that the 1817–1851, 1881–1927, 1977–1990 and 2005–present flood clusters occur mostly in phase with palaeoclimate proxies. The cross-spectral analysis documents that the periodicities detected in the coherency and phase spectra of 11 (Schwabe cycle) and 104 years (Gleissberg cycle) are related to a high frequency of flooding and solar activity minima, whereas the 22-year cyclicity detected (Hale cycle) is associated with solar activity maxima and a decrease in flood frequency. The analysis of low-frequency atmospheric variability modes shows that Switzerland lies close to the border of the principal summer mode. The Swiss river catchments situated on the centre and southern flank of the Alps are affected by atmospherically unstable areas defined by the positive phase of the pattern, while those basins located in the northern slope of the Alps are predominantly associated with the negative phase of the pattern. Furthermore, a change in the low-frequency atmospheric variability pattern related to the major floods occurred over the period from 1800 to 2009; the summer principal mode persists in the negative phase during the last cool pulses of the Little Ice Age (1817–1851 and 1881–1927 flood clusters), whereas the positive phases of the mode prevail during the warmer climate of the last 4 decades (flood clusters from 1977 to present).
 
Teil von