dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Multi-objective parameter optimization of common land model using adaptive surrogate modeling
VerfasserIn W. Gong, Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, C. Miao
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 19, no. 5 ; Nr. 19, no. 5 (2015-05-21), S.2409-2425
Datensatznummer 250120718
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-19-2409-2015.pdf
 
Zusammenfassung
Parameter specification usually has significant influence on the performance of land surface models (LSMs). However, estimating the parameters properly is a challenging task due to the following reasons: (1) LSMs usually have too many adjustable parameters (20 to 100 or even more), leading to the curse of dimensionality in the parameter input space; (2) LSMs usually have many output variables involving water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective optimization problem; (3) Regional LSMs are expensive to run, while conventional multi-objective optimization methods need a large number of model runs (typically ~105–106). It makes parameter optimization computationally prohibitive. An uncertainty quantification framework was developed to meet the aforementioned challenges, which include the following steps: (1) using parameter screening to reduce the number of adjustable parameters, (2) using surrogate models to emulate the responses of dynamic models to the variation of adjustable parameters, (3) using an adaptive strategy to improve the efficiency of surrogate modeling-based optimization; (4) using a weighting function to transfer multi-objective optimization to single-objective optimization. In this study, we demonstrate the uncertainty quantification framework on a single column application of a LSM – the Common Land Model (CoLM), and evaluate the effectiveness and efficiency of the proposed framework. The result indicate that this framework can efficiently achieve optimal parameters in a more effective way. Moreover, this result implies the possibility of calibrating other large complex dynamic models, such as regional-scale LSMs, atmospheric models and climate models.
 
Teil von