|
Titel |
Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering |
VerfasserIn |
V. N. Aswathy, O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, J. Quaas |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 15, no. 16 ; Nr. 15, no. 16 (2015-08-27), S.9593-9610 |
Datensatznummer |
250119997
|
Publikation (Nr.) |
copernicus.org/acp-15-9593-2015.pdf |
|
|
|
Zusammenfassung |
Simulations from a multi-model ensemble for the RCP4.5 climate change scenario for the 21st century, and for two
solar radiation management (SRM) schemes (stratospheric sulfate injection (G3), SULF and
marine cloud brightening by sea salt emission SALT) have been analysed in terms of changes in the mean
and extremes of surface air temperature and precipitation. The climate engineering
and termination periods are investigated.
During the climate engineering period, both schemes, as intended,
offset temperature increases by about 60 % globally, but are more effective in the low
latitudes and exhibit some residual warming in the Arctic (especially in the case of SALT which is
only applied in the low latitudes). In both climate engineering scenarios, extreme temperature
changes are similar to the mean temperature changes over much of the globe.
The exceptions are the mid- and high latitudes
in the Northern Hemisphere, where high
temperatures (90th percentile of the distribution) of the climate engineering period compared to RCP4.5 control period rise less than the
mean, and cold temperatures (10th percentile), much more than the
mean. This aspect of the SRM schemes is also reflected in simulated reduction in the frost day frequency of
occurrence for both schemes. However, summer day frequency of
occurrence increases less in the SALT experiment than the SULF experiment, especially over the tropics.
Precipitation extremes in the two SRM scenarios act differently – the SULF
experiment more effectively mitigates extreme precipitation increases over land compared
to the SALT experiment. A reduction in dry spell
occurrence over land is observed in the SALT experiment.
The SULF experiment has a slight increase in the length of dry spells.
A strong termination effect is found for the two
climate engineering schemes, with large temperature increases especially in the Arctic.
Globally, SULF is more effective in reducing extreme temperature increases over land than SALT. Extreme precipitation increases
over land is also more reduced in SULF than the SALT experiment. However, globally SALT
decreases the frequency of dry spell length and reduces the occurrence of hot days compared to SULF. |
|
|
Teil von |
|
|
|
|
|
|