dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Observations of atmospheric mercury in China: a critical review
VerfasserIn X. W. Fu, H. Zhang, B. Yu, X. Wang, C.-J. Lin, X. B. Feng
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 15, no. 16 ; Nr. 15, no. 16 (2015-08-24), S.9455-9476
Datensatznummer 250119990
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-15-9455-2015.pdf
 
Zusammenfassung
China presently contributes the largest amount of anthropogenic mercury (Hg) emission into the atmosphere in the world. Over the past decade, numerous studies have been conducted to characterize the concentration and forms of atmospheric Hg in China, which provide insights into the spatial and temporal distributions of atmospheric Hg through ground-based measurements at widely diverse geographical locations and during cruise and flight campaigns. In this paper, we present a comprehensive review of the state of understanding in atmospheric Hg in China. Gaseous elemental mercury (GEM) and particulate-bound mercury (PBM) measured at the remote sites in China are substantially elevated compared to the background values in the Northern Hemisphere. In Chinese urban areas, the highly elevated GEM, PBM and gaseous oxidized mercury (GOM) were mainly derived from local anthropogenic Hg emissions, whereas regional anthropogenic emissions and long-range transport from domestic source regions are the primary causes of the elevated GEM and PBM concentrations at remote sites. Using 7–9 years of continuous observations at a remote site and an urban site, a slight increase in atmospheric GEM (2.4–2.5 % yr−1) was identified (paired samples test: p < 0.01), which is in agreement with the increasing domestic anthropogenic emissions. Anthropogenic GEM emission quantity in China estimated through the observed GEM / CO concentration ratios ranged from 632 to 1138 t annually over the past decade, 2–3 times larger than published values using emission activity data. Modeling results and filed measurements show dry deposition is the predominant process for removing Hg from the atmosphere, 2.5–9.0 times larger than wet deposition, due to the elevated atmospheric GEM and PBM concentrations that facilitate dry deposition to terrestrial landscapes. Further studies to reconcile the observed and simulated Hg concentrations, to understand the impact of domestic emission reduction on Hg concentration and deposition and to delineate the role of Hg emission and deposition of China in the global Hg biogeochemical cycle, are needed.
 
Teil von