dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method
VerfasserIn G. Lee, K. S. Jun, E.-S. Chung
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Sciences ; 15, no. 4 ; Nr. 15, no. 4 (2015-04-20), S.863-874
Datensatznummer 250119425
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-15-863-2015.pdf
 
Zusammenfassung
This study proposes an improved group decision making (GDM) framework that combines the VIKOR method with data fuzzification to quantify the spatial flood vulnerability including multiple criteria. In general, GDM method is an effective tool for formulating a compromise solution that involves various decision makers since various stakeholders may have different perspectives on their flood risk/vulnerability management responses. The GDM approach is designed to achieve consensus building that reflects the viewpoints of each participant. The fuzzy VIKOR method was developed to solve multi-criteria decision making (MCDM) problems with conflicting and noncommensurable criteria. This comprising method can be used to obtain a nearly ideal solution according to all established criteria. This approach effectively can propose some compromising decisions by combining the GDM method and fuzzy VIKOR method. The spatial flood vulnerability of the southern Han River using the GDM approach combined with the fuzzy VIKOR method was compared with the spatial flood vulnerability using general MCDM methods, such as the fuzzy TOPSIS and classical GDM methods (i.e., Borda, Condorcet, and Copeland). As a result, the proposed fuzzy GDM approach can reduce the uncertainty in the data confidence and weight derivation techniques. Thus, the combination of the GDM approach with the fuzzy VIKOR method can provide robust prioritization because it actively reflects the opinions of various groups and considers uncertainty in the input data.
 
Teil von