dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Assessing the quality of landslide susceptibility maps – case study Lower Austria
VerfasserIn H. Petschko, A. Brenning, R. Bell, J. Goetz, T. Glade
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Sciences ; 14, no. 1 ; Nr. 14, no. 1 (2014-01-16), S.95-118
Datensatznummer 250118234
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-14-95-2014.pdf
 
Zusammenfassung
Landslide susceptibility maps are helpful tools to identify areas potentially prone to future landslide occurrence. As more and more national and provincial authorities demand for these maps to be computed and implemented in spatial planning strategies, several aspects of the quality of the landslide susceptibility model and the resulting classified map are of high interest. In this study of landslides in Lower Austria, we focus on the model form uncertainty to assess the quality of a flexible statistical modelling technique, the generalized additive model (GAM). The study area (15 850 km2) is divided into 16 modelling domains based on lithology classes. A model representing the entire study area is constructed by combining these models. The performances of the models are assessed using repeated k-fold cross-validation with spatial and random subsampling. This reflects the variability of performance estimates arising from sampling variation. Measures of spatial transferability and thematic consistency are applied to empirically assess model quality. We also analyse and visualize the implications of spatially varying prediction uncertainties regarding the susceptibility map classes by taking into account the confidence intervals of model predictions. The 95% confidence limits fall within the same susceptibility class in 85% of the study area. Overall, this study contributes to advancing open communication and assessment of model quality related to statistical landslide susceptibility models.
 
Teil von