|
Titel |
Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia – Part I: Radiocarbon inventories |
VerfasserIn |
M. Winterfeld, T. Laepple, G. Mollenhauer |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1726-4170
|
Digitales Dokument |
URL |
Erschienen |
In: Biogeosciences ; 12, no. 12 ; Nr. 12, no. 12 (2015-06-19), S.3769-3788 |
Datensatznummer |
250117993
|
Publikation (Nr.) |
copernicus.org/bg-12-3769-2015.pdf |
|
|
|
Zusammenfassung |
Particulate organic matter (POM) derived from permafrost soils and
transported by the Lena River represents a quantitatively important
terrestrial carbon pool exported to Laptev Sea sediments (next to POM derived
from coastal erosion). Its fate in a future warming Arctic, i.e., its
remobilization and remineralization after permafrost thawing as well as its
transport pathways to and sequestration in marine sediments, is currently
under debate. We present one of the first radiocarbon (14C) data sets
for surface water POM within the Lena Delta sampled in the summers of 2009–2010
and spring 2011 (n = 30 samples). The bulk Δ14C values varied from
−55 to −391 ‰ translating into 14C ages of 395 to 3920
years BP. We further estimated the fraction of soil-derived POM to our
samples based on (1) particulate organic carbon to particulate nitrogen
ratios (POC : PN) and (2) on the stable carbon isotope (δ13C)
composition of our samples. Assuming that this phytoplankton POM has a modern
14C concentration, we inferred the 14C concentrations of the
soil-derived POM fractions. The results ranged from −322 to
−884 ‰ (i.e., 3060 to 17 250 14C years BP) for the
POC : PN-based scenario and from −261 to −944 ‰ (i.e., 2370 to
23 100 14C years BP) for the δ13C-based scenario. Despite the limitations of our approach, the
estimated Δ14C values of the soil-derived POM fractions seem to
reflect the heterogeneous 14C concentrations of the Lena River catchment
soils covering a range from Holocene to Pleistocene ages better than the bulk
POM Δ14C values. We further used a dual-carbon-isotope three-end-member mixing model to distinguish between POM contributions from
Holocene soils and Pleistocene Ice Complex (IC) deposits to our soil-derived POM
fraction. IC contributions are comparatively low (mean of 0.14)
compared to Holocene soils (mean of 0.32) and riverine phytoplankton (mean of
0.55), which could be explained with the restricted spatial distribution of
IC deposits within the Lena catchment. Based on our newly calculated
soil-derived POM Δ14C values, we propose an isotopic range for the
riverine soil-derived POM end member with Δ14C of
−495 ± 153 ‰ deduced from our δ13C-based binary
mixing model and δ13C of −26.6 ± 1 ‰ deduced from
our data of Lena Delta soils and literature values. These estimates can help
to improve the dual-carbon-isotope simulations used to quantify contributions
from riverine soil POM, Pleistocene IC POM from coastal erosion, and
marine POM in Siberian shelf sediments. |
|
|
Teil von |
|
|
|
|
|
|